อนุภาคไมเซลล์สำหรับการตรวจวัดสารประกอบแอลดีไฮด์สายยาวด้วยเทคนิคฟลูออเรสเซนต์

ผู้แต่ง

  • Piyanan Pranee นักศึกษา หลักสูตรวิทยาศาสตรมหาบัณทิต สาขาวิชาเคมีอนินทรีย์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
  • Boosayarat Tomapatanaget ผู้ช่วยศาสตราจารย์ ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

คำสำคัญ:

แอลดีไฮด์สายยาว, ไมเซลล์, ฟลูออเรสเซนต์

บทคัดย่อ

สารประกอบแอลดีไฮด์สายยาวถูกใช้เป็นตัวชี้วัดทางการแพทย์สำหรับการตรวจวัดโรคต่างๆ โดยแอลดีไฮด์สายยาวดังกล่าวนั้น จะประกอบไปด้วยสายโซ่ไฮโดรคาร์บอนและหมู่ฟอร์มิลซึ่งสามารถใช้เป็นสารลดแรงตึงผิวสำหรับการเกิดการจัดเรียงตัวเป็นไมเซลล์ ในงานวิจัยนี้ผู้วิจัยอาศัยหลักการของการจัดเรียงตัวของไมเซลล์แบบไม่สมบูรณ์สำหรับการตรวจวัดสารประกอบแอลดีไฮด์สายยาว โดยกักเก็บโมเลกุลเซ็นเซอร์ (HZ) ที่มีองค์ประกอบของแนฟทาลีไมด์และหมู่ฟังก์ชั่นไฮดราซีนไว้ในไมเซลล์ดังกล่าวซึ่งเตรียมได้จากสารลดแรงตึงผิว 2 ชนิด คือ สารลดแรงตึงผิว CTAB และสารลดแรงตึงผิวร่วม (S1) เมื่อนำระบบเซ็นเซอร์นั้นไปตรวจวัดสารประกอบแอลดีไฮด์สายยาวทำให้เกิดการจัดเรียงตัวของไมเซลล์อย่างสมบูรณ์และส่งผลให้เกิดการเปลี่ยนแปลงของสัญญาณฟลูออเรสเซนต์ ยิ่งไปกว่านั้นพบว่าสัญญาณฟลูออเรสเซนต์ที่เปลี่ยนไปจะแปรผันโดยตรงกับความเข้มข้นของแอลดีไฮด์สายยาวซึ่งมีขีดจำกัดของการตรวจวัด เท่ากับ 80.38 ไมโครโมลาร์ ในช่วงความเป็นเส้นตรง 0.03-0.33 มิลลิโมลาร์ ในสารละลาย 2.5 % DMSO/พีบีเอส บัฟเฟอร์ pH 7.4

เอกสารอ้างอิง

1. Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Translational Lung Cancer Research. 2016; 5 (3): 288-300.

2. Furrukh M, Tobacco Smoking and Lung Cancer: Perception-changing facts. Sultan Qaboos University Medical Journal. 2013; 13 (3): 345-358.

3. Bumrungrad International Hospital Report of Lung Cancer [Internet] 2018 [cited 2018 June 1]. Available from: https://www.bumrungrad.com/en/pulmonary-lung-center-bangkok-thailand/conditions/lung-cancer

4. Fuchs P, Loeseken C, Schubert JK. Miekisch W. Breath gas aldehydes as biomarkers of lung cancer. International Journal of Cancer. 2010; 126 (11): 2663-2670.

5. Corradi M, Rubinstein I, Andreoli R, Manini P, Caglieri A, Poli D, Alinovi R, Mutti A. Aldehydes in exhaled breath condensate of patients with chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine. 2003; 167 (10): 1380-1386.

6. Callol-Sanchez L, Munoz-Lucas MA, Gomez-Martin O, Maldonado-Sanz JA, Civera-Tejuca C, Gutierrez-Ortega C, et al. Observation of nonanoic acid and aldehydes in exhaled breath of patients with lung cancer. Journal of Breath Research. 2017; 11 (2): 026004.

7. Ribeiro-Santos R, de Melo NR, Andrade M, Azevedo G, Machado AV, Carvalho-Costa D, et al. Whey protein active films incorporated with a blend of essential oils: Characterization and effectiveness. Packaging Technology and Science. 2017; 2352: 1-14.

8. Shahidi F, Pegg RB. Hexanal as an indicator of the flavor deterioration of meat and meat products in lipids in food flavors, American Chemical Society. 1994; 558: 256-279.

9. Li N, Deng C, Yao N, Shen X, Zhang X. Determination of acetone, hexanal and heptanal in blood samples by derivatization with pentafluorobenzyl hydroxylamine followed by headspace single-drop microextraction and gas chromatography-mass spectrometry. Analytica Chimica Acta. 2005; 540 (2): 317-323.

10. Chunhui Deng, Xiangmin Zhang, Ning Li. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography–mass spectrometry. Journal of Chromatography B, 2004; 808: 269-277.

11. Liu JF, Yuan BF, Feng YQ. Determination of hexanal and heptanal in human urine using magnetic solid phase extraction coupled with in-situ derivatization by high performance liquid chromatography. Talanta. 2015; 136: 54-59.

12. Liu C, Shi C, Li H, Du W, Li Z, Wei L, Yu M. Nanomolar fluorescent quantitative detection of formaldehyde with a 8-hydroxyquinoline derivative in aqueous solution and electrospun nanofibers. Sensors and Actuators B: Chemical. 2015; 219: 185-191.

13. Tang Y, Kong X, Liu ZR, Xu A, Lin W. Lysosome-targeted turn-on fluorescent probe for endogenous formaldehyde in living cells. Analytical Chemistry. 2016; 88 (19): 9359-9363.

14. Mukherjee K, Chio TI, Gu H, Banerjee A, Sorrentino AM, Sackett DL, Bane SL. Benzocoumarin hydrazine: A large stokes shift fluorogenic sensor for detecting carbonyls in isolated biomolecules and in live cells. ACS Sensors. 2017; 2 (1): 128-134.

15. Sara M, M., M. O.; P., T. V. Applications of polymer micelles for imaging and drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2015; 7 (5): 691-707.

16. Esmaili M, Ghaffari SM, Moosavi MZ, Atri MS, Sharifizadeh A, Farhadi M, Yousefi R, Chobert JM, Haertlé T, Moosavi Movahedi AA. Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT - Food Science and Technology. 2011; 44 (10): 2166-2172.

17. Tadros TF. Future developments in cosmetic formulations. International Journal of Cosmetic Science. 1992; 14 (3): 93-111.

18. Ding L, Bai Y, Cao Y, Ren G, Blanchard GJ, Fang Y. Micelle-induced versatile sensing behavior of bispyrene-based fluorescent molecular sensor for picric acid and PYX explosives. Langmuir. 2014; 30 (26): 7645-7653.

19. Oh T, Choi JY, Heller MJ. Enhanced fluorescent resonant energy transfer of DNA conjugates complexed with surfactants and divalent metal ions. Analyst. 2016; 141 (8): 2371-2375.

20. Yan F, Su B. Tailoring Molecular Permeability of Nanochannel-Micelle Membranes for Electrochemical Analysis of Antioxidants in Fruit Juices without Sample Treatment. Analytical Chemistry. 2016; 88(22): 11001-11006.

ดาวน์โหลด

เผยแพร่แล้ว

2019-08-09

ฉบับ

ประเภทบทความ

บทความวิจัย