การเปรียบเทียบปริมาณการปล่อยก๊าซคาร์บอนไดออกไซด์เทียบเท่า (CO2-e) ที่เกิดขึ้นระหว่างการผลิตคอนกรีตทั่วไปและจีโอโพลีเมอร์คอนกรีตเพื่ออุตสาหกรรมการก่อสร้างที่เป็นมิตรกับสิ่งแวดล้อม โดยใช้วิธีการประเมินวัฏจักรชีวิต

ผู้แต่ง

  • Supakorn Aranyasen นักศึกษา หลักสูตรวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Korb Srinavin รองศาสตราจารย์ สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Preenithi Aksorn ผู้ช่วยศาสตราจารย์ สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Wuttipong Kusonkhum นักศึกษา หลักสูตรวิศวกรรมศาสตรดุษฎีบัณฑิต สาขาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น

คำสำคัญ:

การประเมินวัฏจักรชีวิต (LCA), จีโอโพลิเมอร์คอนกรีต, คอนกรีตทั่วไป

บทคัดย่อ

อุตสาหกรรมการก่อสร้างมีการใช้ปูนซีเมนต์เป็นวัตถุดิบหลักในการผลิตคอนกรีตเพื่อการก่อสร้างอาคาร อย่างไรก็ตามกระบวนการผลิตปูนซีเมนต์มีการใช้งานพลังงานและก่อให้เกิดการปล่อยก๊าซคาร์บอนไดออกไซด์ (CO2) ออกสู่สภาพแวดล้อมมากที่สุดเมื่อเทียบกับวัตถุดิบชนิดอื่นๆ เพื่อลดปริมาณการปล่อยก๊าซคาร์บอนไดออกไซด์จากการผลิตปูนซีเมนต์ที่เพิ่มขึ้นได้มีการพยายามหาคอนกรีตชนิดอื่นมาใช้แทนคอนกรีตปกติ เช่น จีโอโพลิเมอร์คอนกรีตซึ่งมีเถ้าลอยเป็นส่วนผสม โดยเถ้าลอยเป็นของเสียที่ได้จากโรงงานผลิตไฟฟ้าถ่านหิน  การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อเปรียบเทียบหาปริมาณการปล่อยก๊าซคาร์บอนไดออกไซด์เทียบเท่า (CO2-e) จากการผลิตคอนกรีต 1 ลูกบาศก์เมตร ที่ให้ค่ากำลังรับแรงอัดของคอนกรีตเท่ากับ 40 MPa อายุที่ 28 วัน  ทั้ง 2 ประเภท ด้วยวิธีการประเมินวัฏจักรชีวิต (Life Cycle Assessment: LCA) ในการวิเคราะห์หาค่าปริมาณคาร์บอนไดออกไซด์เทียบเท่า (CO2-e) โดยอาศัยข้อมูลจากการทบทวนวรรณกรรมและจากการสำรวจภาคสนาม จากการศึกษาพบว่า ผลรวมปริมาณการปล่อยก๊าซคาร์บอนไดออกไซด์เทียบเท่า (CO2-e)  สำหรับการผลิตคอนกรีตทั้ง 2 ประเภทเป็นดังนี้ คอนกรีตปกติ มีค่าเท่ากับ 451.09 kg-CO2-e / m3และจีโอโพลีเมอร์คอนกรีต มีค่าเท่ากับ 420.49 kg-CO2-e / m3

เอกสารอ้างอิง

Huntzinger DN, Eatmon TD. A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. Journal of Cleaner Production. 2009 May 1;17(7):668-675.

Meyer C. The greening of the concrete industry. Cement and concrete composites. 2009 Sep 1;31(8):601-605.

Turner LK, Collins FG. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials. 2013 Jun 1; 43:125-130.

Flower DJ, Sanjayan JG. Greenhouse gas emissions due to concrete manufacture. The international Journal of life cycle assessment. 2007 Jul 1;12(5):282.

Chindaprasirt P, Jaturapitakkul C, Chalee W, Rattanasak U. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste management. 2009 Feb 1;29(2):539-543.

Feng J, Zhang R, Gong L, Li Y, Cao W, Cheng X. Development of porous fly ash-based geopolymer with low thermal conductivity. Materials & Design (1980-2015), 65, 529-533.

Van Jaarsveld JG, Van Deventer JS, Lukey GC. The characterisation of source materials in fly ash-based geopolymers. Materials Letters. 2003 Jan 1;57(7):1272-1280.

Nejat P, Morsoni AK, Jomehzadeh F, Behzad H, Vesali MS, Majid MA. Iran's achievements in renewable energy during fourth development program in comparison with global trend.Renew Sustain Energy Rev 2013;22:561–570.

Pacheco-Torgal F, Moura D, Ding Y, Jalali S. Composition, strength and workability of alkali-activated metakaolin based mortars. Constr Build Mater 2011;25:3732–3745.

Xie T, Ozbakkaloglu T. Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram Int 2015;41:5945–5958.

Huseien GF, Mirza J, Ismail M, Ghoshal SK, Hussein AA. Geopolymer mortars as sustainable repair material: A comprehensive review. Renewable and Sustainable Energy Reviews. 2017 Dec 1;80:54-74.

ISO E. ISO 14040: 2006. Environmental Management-Life Cycle Assessment-Principles and Framework. CEN (European Committee for Standardisation), Brussels. 2006.

Vieira DR, Calmon JL, Coelho FZ. Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: A review. Construction and Building Materials. 2016 Oct 15;124:656-666.

Huang Q, Lin L, Tan EL, Singh B. Mix Design of Recycled Aggregate Concrete Using Packing Density Method. InProceedings of the 1st International Conference on Structural Engineering Research, 20-22 November 2017, Sydney, Australia 2017 (pp. 49-55).

SIVA MM, PRABU MB, SOUNDHIRARAJAN MK, RAMYA ME, SARAVANAN MM. STUDY ON MECHANICAL AND STRUCTURAL PROPERTIES OF GEOPOLYMER CONCRETE MADE WITH RECYCLED AGGREGATES. micron. 2019;195(19.5):45.

Sukontasukkul P. Methodology for Calculating Carbon Dioxide Emission in the Production of Ready-mixed Concrete. InIn1st International Conference on Computational Technologies in Concrete Structures 2015.

Thailand Greenhouse Gas Management Organization (Public Organization: TGO), Carbon Footprint Technical Committee of Products. Guidelines for evaluating carbon footprint of products; 2011 Sep.101p.

Morawicki R O, Hager T "Energy and greenhouse gases footprint of food processing." (2014): 82-99.

Collins F. Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. The International Journal of Life Cycle Assessment. 2010 Jul 1;15(6):549-556.

McLellan BC, Williams RP, Lay J, Van Riessen A, Corder GD. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of cleaner production. 2011 Jun 1;19(9-10):1080-1090.

Abbas R, Khereby MA, Ghorab HY, Elkhoshkhany N. Preparation of geopolymer concrete using Egyptian kaolin clay and the study of its environmental effects and economic cost. Clean Technologies and Environmental Policy. 2020 Jan 19:1-9.

ดาวน์โหลด

เผยแพร่แล้ว

2021-10-15

ฉบับ

ประเภทบทความ

บทความวิจัย