การศึกษาแนวทางการเพิ่มค่าความเป็นด่างจากมูลสุกรในการกำจัดไนโตรเจนและฟอสฟอรัสในระบบบำบัดทางชีวภาพ

ผู้แต่ง

  • Chatlada Piasai นักศึกษา หลักสูตรวิศวกรรมศาสตรมหาบัณฑิต สาขาวิศวกรรมสิ่งแวดล้อม สำนักวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีสุรนารี
  • Thunchanok Phorndon นักศึกษา หลักสูตรวิศวกรรมศาสตรมหาบัณฑิต สาขาวิศวกรรมสิ่งแวดล้อม สำนักวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีสุรนารี
  • Nittaya Boontian ผู้ช่วยศาสตราจารย์ สาขาวิชาวิศวกรรมสิ่งแวดล้อม สำนักวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีสุรนารี
  • Mohamad Padri นักศึกษา หลักสูตรวิศวกรรมศาสตรดุษฎีบัณฑิต สาขาวิศวกรรมสิ่งแวดล้อมสำนักวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีสุรนารี

คำสำคัญ:

ความเป็นด่าง, มูลสุกร, ฟอสฟอรัส

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อหาผลของการเติมมูลสุกรต่อประสิทธิภาพของระบบกำจัดฟอสฟอรัสทางชีวภาพ โดยทดลองเติมมูลสุกร เพื่อช่วยควบคุมค่าความเป็นด่างในน้ำเสีย กำหนดอายุตะกอน (SRT) ที่ 60 วัน พบว่าการกำจัด Ortho-P เท่ากับร้อยละ 61.34 51.17 และ 55.68 ในน้ำเสียลักษณะที่ 1-3 ตามลำดับ โดยพบว่าค่าความเป็นด่างเฉลี่ยของลักษณะที่ 1, 2 และ 3 เท่ากับ 492.05, 430.80 และ 482.64 มก./ล. ที่ pH เท่ากับ 8 ซึ่งการเติมค่าความเป็นด่าง จากมูลสุกรในน้ำเสียลักษณะที่ 2-3 ส่งผลให้เกิดการคายฟอสฟอรัสเฉลี่ยสูงกว่าปกติถึง 1.32 เท่า ส่วนการกำจัด COD ของทั้ง 3 สูงกว่าร้อยละ 99 การกำจัด TKN เมื่อใช้น้ำเสียลักษณะที่ 1 และ 3 สูงกว่าร้อยละ 95 ส่วนลักษณะที่ 2 มีค่าต่ำที่สุดร้อยละ 79.02 เนื่องจากสัดส่วนของ COD:TN ที่ต่ำ (10.63:1) ทำให้ปริมาณสารอินทรีย์คาร์บอนไม่เพียงพอต่อการกำจัด TKN ดังนั้นการใช้ความเป็นด่างจากมูลสุกรและ NaHCO3 ร่วมกันน้ำเสียลักษณะ 3 สามารถกำจัด COD N และ P ในระบบบำบัดทางชีวภาพได้ ซึ่งงานวิจัยนี้ช่วยลดต้นทุนในการซื้อแหล่งความเป็นด่างได้

References

1. Ministry of natural resources and environment [Internet]. 2018 [updated 2018; cited 2019 Feb 15]. Available from: waste.onep.go.th/wwt.php. Thai.

2. Pollution control department, ministry of natural resources and environment [Internet]. 2010 [updated 2010 Apr 7; cited 2019 May 12]. Available from: http://www.pcd.go.th/info_serv/reg_std_water04.html. Thai.

3. Guerrero J, Guisasola A, Baeza JA. Controlled crude glycerol dosage to prevent EBPR failures in C/N/P removal WWTPs. Chem. Eng. J. 2015; 271: 114–127.

4. Wei Y, Wang S, Ma B, Li X, Yuan Z, He Y, Peng Y. The effect of poly-β-hydroxyalkanoates degradation rate on nitrous oxide production in a denitrifying phosphorus removal system. Bioresour. Technol. 2014; 170: 175-182.

5. Wang R, Peng Y, Cheng Z, Ren N. Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system. Bioresour. Technol. 2014; 169: 307-312.

6. Chaiyaphan W, Khiriratnikom S, Intharangsang N. Study of microbial community and the possibility on saline enhanced biological phosphorus removal using sequencing batch reactor system. Master of science degree in biology. Thaksin University. 2007; 722 pp. Thai.

7. Wen WL, Hai LZ, Guo PS, Han QY. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process. Water. Res. 2015; 1-11.

8. Ehab MR, Maha ME, Mohamed AH, Ahmed MN. Application of contact stabilization activated sludge for enhancing biological phosphorus removal (EBPR) in domestic wastewater. HBRC Journal. 2013; 10: 92–99

9. Bond PL, Keller J, Blackall LL. Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal: a possible mechanism of intracellular pH control. Biotech. Bioeng. 1999; 63: 507–515.

10. Qasim SR. Wastewater treatment plants: planning. design and operation. 2nd ed. Boca Raton. CRC Press: 1999.

11. Liu X, Xiang L, Song Y, Qian F, Meng X. The effects and mechanism of alkalinity on the phosphate recovery from anaerobic digester effluent using dolomite lime. Environ. Earth Sci. 2015; 73(9): 5067-5073.

12. Yin D, Liu W, Zhai N, Feng Y, Yang G, Wang X, Han X. Production of bio-energy from pig manure: a focus on the dynamics change of four parameters under sunlight-dark conditions. PLOS. ONE. 2015; 10(5): 1-12.

13. Deng L, Zheng P, Chen Z, Mahmood Q. Improvement in post-treatment of digested swine wastewater. Bioresour. Technol. 2008; 99(8): 3136–3145.

14. Andole OH, Lei Z, Zhang Z, Raude J, Kanali C. Optimization of biogas production in dry anaerobic digestion of swine manure by the use of alkalinity index to monitor a prototype cylindrical digester. Sustainable. Energy. 2017; 5(1): 32-37.

15. Guerrero J, Guisasola A, Baeza JA. The nature of the carbon source rules the competition between PAO and denitrifiers in systems for simultaneous biological nitrogen and phosphorus removal. Water. Res. 2011; 45(16): 4793-4802.

16. Alistair B, Steven P, Andy S. Enhanced biological phosphorus removal for high-strength wastewater with a low rbCOD:P ratio. Bioresour. Technol. 2008; 99: 1236-1241.

17. Jasna H, Darko T, Hanife B, Yüksel O. Influence of support materials on phosphate removal by the pure culture of Acinetobacter calcoaceticus. Food. Technol. Biotechnol. 2003; 41(4): 331–338.

18. Auling G, Pilz F, Busse HJ, Karrasch S, Streichan M, Schön G. Analysis of the polyphosphate-accumulating microflora in phosphorus-eliminating, anaerobic-aerobic activated sludge systems by using diaminopropane as a biomarker for rapid estimation of Acinetobacter spp. Appl. Environ. Microbiol. 1992; 57: 3585-3592.

19. Piasai C, Boontian N, Phorndon T, Padri M. Mass balances of COD nitrogen and phosphorus in enhanced biological nutrient removal processes. TSTJ. Forthcoming 2020.

20. Piasai C, Boontian N, Phorndon T, Padri M. Mass balances of biological nutrient removal with extended sludge retention time. TSTJ. Forthcoming 2020.

21. Tayà C, Garlapati VK, Guisasola A, Baeza JA. The selective role of nitrite in the PAO/GAO competition. Chemosphere. 2013; 93: 612-618.

22. Kee FL, Tadashi S, Ying HO, Adeline SMC, Hak KY, Pei YH. Kinetic and stoichiometric characterization for efficient enhanced biological phosphorus removal (EBPR) process at high temperatures. Bioprocess. Biosyst. Eng. 2015; 38: 729–737.

23. Seyoum YG, Marc WB, David C, Thomas FH. Effects of glucose on the performance of enhanced biological phosphorus removal activated sludge enriched with acetate. Bioresour. Technol. 2012; 121: 19-24.

24. Piasai C, Boontian N, Yingchon U, Pyae HA. Efficiency enhancement of biological phosphorus removal with difference carbon sources. EIT Journal. 2017; 28(2): 41-52. Thai.

25. Piasai C, Boontian N, Yingchon U, Phorndon T, Padri M. Optimum conditions to produce acetic acid from various excess sludge for using in biological phosphorus removal processes. (2562). TSTJ. 2020; 28(2): 277-296.

26. Bin Z, Bin X, Zhigang Q, Zhiqiang C, Junwen L, Taishi G, Jingfeng W. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor. Sci. Rep. 2015; 5(1): 1-10.

27. Haberman A, Zelinger E, Samach A. Scanning electron microscope (SEM) imaging to determine inflorescence initiation and development in olive. Bio. Protoc. 2017; 7(19): 2575.

28. American Public Health Association, American Water Works Association, Water Environment Federation,Eaton AD. Standard methods for the examination of water and wastewater. 21st ed. Washington DC: 2005.

29. Tam NFY, Leung, GLW, Wong YS. The effects of external carbon loading on nitrogen removal in sequencing batch reactors. Wat. Sci. Tech. 1994; 30(6): 73–81.

30. Merzouki M, Bernet NP, Delgenès J, Benlemlih M. Effect of prefermentation on denitrifying phosphorus removal in slaughterhouse wastewater. Bioresour. Technol. 2005; 96: 1317-1322.

31. Lapapairoj K. Proportion of microbial population in an EBPR system at different P:COD ratio. Bangkok: King Mongkut's University of Technology Thonburi; 2003. Thai.

32. Piasai C, Boontian N, Yingchon U, Pyae HA. Effect of acetate as a sole carbon source for enhance biological phosphorus removal. Proceedings of the Renewable Energy Sources-Research and Business (RESRB) Conference; 2017 June 19-21; Wrocław, Poland. 2017.

33. Baetens D. Enhanced biological phosphorus removal modelling and experimental design [PhD thesis]. St Pietersnieuwstraat, Gent: Ghent University. Belgium; 2001.

34. Chen Y, Liu Y, Zhou Q, Gu G. Enhanced phosphorus biological removal from wastewater—effect of microorganism acclimatization with different ratios of short-chain fatty acids mixture. Biochem. Eng. J. 2005; 27(1): 24–32.

35. Henze M, Gujer W, Mino T, van Loosdrecht MCM. Activated sludge models ASM1, ASM2, ASM2d and ASM3. reprint ed. London : IWA Publishing, 2000; 121 p.

36. Tasli R, Artan N, Orhon D. The influence of different substrates on enhanced biological phosphorus removal in a sequencing batch reactor. Water Sci. Technol. 1997; 35(1): 75-80.

37. Smolders GJF, Meij J, Van Loosdrecht MCM, Heijnen JJ. Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence. Biotechnol. Bioeng. 1994; 43: 461–470.

38. Aiking H, Stijnman A, van Garderen C, van Heerikhuizen H, van’t Riet J. Inorganic phosphate accumulation and cadmium detoxification in Klebsiella aerogenes NCTC 418 growing in continuous culture. Appl. Environ. Microbiol. 1984; 47: 374–377.

39. Nielsen PH, Saunders AM, Hansen AA, Larsen P, Nielsen JL. Microbial communities involved in enhanced biological phosphorus removal from wastewater—a model system in environmental biotechnology. Curr. Opin. Biotechnol. 2012; 23(3): 452–459.

40. Hrenovic J, Tibljas D, Buyukgungor H, Orhan Y. influence of support materials on phosphate removal by the pure culture of Acinetobacter Calcoaceticus. Food Technol. Biotechnol. 2003; 41(4): 331-338.

41. Koichi S, Shinya M, Satoshi O, Kensuke N, Akihiko T, Satoshi T, Akira H. Modeling and experimental study on the anaerobic/aerobic/anoxic process for simultaneous nitrogen and phosphorus removal: The effect of acetate addition. Process. Biochem. 2008; 43: 605-614.

42. Shaomei H, Daniel LG, Katherine DM. “Candidatus Accumulibacter” population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes. Appl. Environ. Microbiol. 2007; 5865–5874.

43. Elias KM, Jose AV. Effects of antimicrobial combinations on Pseudomonas aeruginosa Aspergillus fumigatus mixed microbial biofilm. J. Microbiol. 2015; 2(4): 1-12.

44. Liu X, Zhuo S, Rensing C, Zhou S. Syntrophic growth with direct interspecies electron transfer between pili-free Geobacter species. ISME. J. 2018; 12(9): 2142-2151.

Downloads

เผยแพร่แล้ว

2020-10-18

ฉบับ

บท

บทความวิจัย