แบบจำลองแขนค้ำยันและแขนยึดสำหรับการทำนายกำลังรับแรงเฉือนของคานลึกคอนกรีตเสริมด้วยเส้น FRP

ผู้แต่ง

  • Prach Amornpinyo อาจารย์ สาขาวิชาครุศาสตร์อุตสาหกรรมโยธา คณะครุศาสตร์อุตสาหกรรม มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน วิทยาเขตขอนแก่น
  • Jaruek Teerawong รองศาสตราจารย์ สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Chaichan Yuwanasiri อาจารย์ สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร มหาวิทยาลัยภาคตะวันออกเฉียงเหนือ
  • Panatchai Chetchotisak รองศาสตราจารย์ สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน วิทยาเขตขอนแก่น

คำสำคัญ:

คานลึก, แบบจำลองแขนค้ำยันและตัวยึด, เหล็กเส้นไฟเบอร์กลาส

บทคัดย่อ

บทความนี้นำเสนอแบบจำลองแขนค้ำยันและแขนยึดสำหรับการทำนายกำลังรับแรงเฉือนของคานลึกคอนกรีตเสริมด้วยเส้น FRP แบบจำลองได้พัฒนาบนพื้นฐานของกลไกการถ่ายแรงในแนวทแยง และกลไกแบบโครงข้อหมุน โดยที่กลไกการถ่ายแรงในแนวทแยงได้พิจารณาผลกระทบจากการถดถอยของกำลังอัดของคอนกรีต ส่วนกลไกแบบโครงข้อหมุนใช้สำหรับอธิบายกำลังรับแรงเฉือนที่เกิดจากเหล็กเสริมรับแรงเฉือนในแนวราบและแนวดิ่ง กำลังรับแรงเฉือนที่ได้จากการทำนายเกิดจากการรวมกันของกำลังที่ได้จากสองส่วนนี้อย่างอิสระ ตัวแปรไม่ทราบค่า 4 ตัวแปรได้แก่ ตัวแปรสำหรับ อธิบายความถดถอยของกำลังอัดคอนกรีต 2 ตัวแปร และ ตัวแปรสำหรับเหล็กเสริมที่แผ่เอวของคาน 2 ตัวแปร ซึ่งหาได้จากการวิเคราะห์หาคำตอบที่เหมาะสมที่สุดอย่างไร้เชิงเส้น โดยใช้ฐานข้อมูลผลการทดสอบคานลึกคอนกรีตเสริมด้วยเส้น FRP ทั้งสิ้น 121 ตัวอย่าง จากนั้นใช้วิธี ten-fold cross-validation สำหรับการประเมินประสิทธิภาพของแบบจำลอง การทำนายกำลังรับแรงเฉือนโดยใช้แบบจำลองที่เสนอได้นำไปเปรียบเทียบกับผลการทำนายกำลังรับแรงเฉือนจากมาตรฐานงานโครงสร้างคอนกรีตของสหรัฐอเมริกา แคนาดา และ แบบจำลองจากงานวิจัยอื่น การเปรียบเทียบแสดงให้เห็นว่าแบบจำลองที่เสนอให้ผลการทำนายที่แม่นยำและสม่ำเสมอกว่าแบบจำลองที่กล่าวมาข้างต้น โดยได้ค่าเฉลี่ยของอัตราส่วนกำลังรับแรงเฉือนจากการทำนายต่อกำลังจากการทดสอบเท่ากับ 1.01 และค่าสัมประสิทธิ์การแปรปรวนเท่ากับ 19.82%

เอกสารอ้างอิง

ACI committee 318. Building code requirements for reinforced concrete (ACI318M-19) and commentary (318RM-19). Farmington Hills, Mich.: American Concrete Institute; 2019.

CSA Committee A23.3. Design of concrete structures. Ontario, Canada: Canadian Standards Association; 2014.

European committee for standardization, CEN, EN 1992-1-1 Eurocode 2: design of concrete structures – Part 1-1: general rules and rules for buildings, Brussels, Belgium; 2004.

Shyh-Jiann Hwang W-YL, Hung-Jen L. Shear Strength Prediction for Deep Beams. ACI Structural Journal. 2000; 97(3): 367-376 .

Gaetano Russo RV, Margherita P. Reinforced Concrete Deep Beams- Shear Strength Model and Design Formula. ACI Structural Journal. 2005; 102(3): 429-437.

Chetchotisak P, Teerawong J, Yindeesuk S, Song J. New strut-and-tie-models for shear strength prediction and design of RC deep beams. Computers and Concrete. 2014; 14: 19-40.

Said M, Adam MA, Mahmoud AA, Shanour AS. Experimental and analytical shear evaluation of concrete beams reinforced with glass fiber reinforced polymers bars. Construction and Building Materials. 2016; 102: 574–591.

Nanni A. North American design guidelines for concrete reinforcement and strengthening using FRP: principles, applications and unresolved issues. Construction and Building Materials. 2003; 17(6): 439-446.

Mihaylov BI. Two-Parameter Kinematic Approach for Shear Strength of Deep Concrete Beams with Internal FRP Reinforcement. Journal of Composites for Construction. 2016; 21(2): 04016094.

Gao D, Zhang C. Shear strength calculating model of FRP bar reinforced concrete beams without stirrups. Engineering Structures. 2020; 221: 111025.

Ashour AF, Kara IF. Size effect on shear strength of FRP reinforced concrete beams. Composites Part B: Engineering. 2014; 60: 612-620.

CSA S806-12. Design and Construction of Building Structures with Fibre-reinforced Polymers: Canadian Standards Association/National Standards of Canada; 2012.

Dhahir MK. Shear strength of FRP reinforced deep beams without web reinforcement. Composite Structures. 2017; 165: 223-232.

Thomas J, Ramadass S. Prediction of the load and deflection response of concrete deep beams reinforced with FRP bars. Mechanics of Advanced Materials and Structures. 2019; 28(1): 43-66.

Chen H, Yi W-J, Ma ZJ, Hwang H-J. Modeling of shear mechanisms and strength of concrete deep beams reinforced with FRP bars. Composite Structures. 2020; 234: 111715.

Russo G, Venir R, Pauletta M. Reinforced Concrete Deep Beams—Shear Strength Model and Design Formula. ACI STRUCTURAL JOURNAL. 2005; 102(3): 429-437.

Zhang L-X, Hsu TTC. Behavior and Analysis of 100 MPa Concrete Membrane Elements. Journal of Structural Engineering. 1998; 124(1): 24-34.

Zwicky D, Vogel T. Critical Inclination of Compression Struts in Concrete Beams. Journal of Structural Engineering. 2006; 132(5): 686-693.

Hwang S-J, Lu W-Y, Lee H-J. Shear Strength Prediction for Reinforced Concrete Corbels. ACI Structural Journal. 2000; 97(4): 543-552.

El-Sayed AK, El-Salakawy EF, Benmokrane B. Shear strength of fibre-reinforced polymer reinforced concrete deep beams without web reinforcement. Canadian Journal of Civil Engineering. 2012; 39(5): 546-555.

Andermatt MF, Lubell AS. Behavior of Concrete Deep Beams Reinforced with Internal Fiber-Reinforced Polymer—Experimental Study. ACI Structural Journal. 2013; 110(4): 585-594.

Kim D, Lee J, Lee YH. Effectiveness factor of strut-and-tie models for concrete deep beams reinforced with FRP rebars. Composites Part B: Engineering. 2014; 56: 117–125.

Farghaly AS, Benmokrane B. Shear behavior of FRPreinforced concrete deep beams without web reinforcement. Journal of Composites for Construction. 2013; 5(4): 268–275.

Abed F, El-Chabib H, AlHamaydeh M. Shear characteristics of GFRP-reinforced concrete deep beams without web reinforcement. Journal of Reinforced Plastics and Composites. 2012; 31(16): 1063-1073.

Nehdi M, Omeman Z, El-Chabib H. Optimal efficiency factor in strut-and-tie model for FRP-reinforced concrete short beams with (1.5 < a/d < 2.5). Materials and Structures. 2008; 41(10): 1713-1727.

Mohamed K. Performance and strut efficiency factor of concrete deep beams reinforced with GFRP bars. Canada: University of Sherbrooke; 2015.

Latosh FA. Structural Behaviour of Conventional and FRP- Reinforced Concrete Deep Beams. Canada: Concordia University; 2014.

Hamid NAA, Thamrin R, Ibrahim A, Hamid HA, Salleh N, Jamellodin Z, et al. Shear Strength Prediction for Concrete Beams Reinforced with GFRP Bars. MATEC Web of Conferences. 2017; 103.

Khaled Mohamed ASF, Brahim Benmokrane. Strut Efficiency-Based Design for Concrete Deep Beams Reinforced with Fiber-Reinforced Polymer Bars. ACI Structural Journal. 2016; 113(4): 791-800.

Abed F, El-Chabib H, AlHamaydeh M. Shear characteristics of GFRP-reinforced concrete deep beams without web reinforcement. Journal of Reinforced Plastics and Composites. 2012; 31: 1063-1073.

Thomas J, Ramadass S. Improved empirical model for the strut efficiency factor and the stiffness degradation coefficient for the strength and the deflection prediction of FRP RC deep beams. Structures. 2021; 29: 2044-2066.

Abed F, El Refai A, Abdalla S. Experimental and finite element investigation of the shear performance of BFRP-RC short beams. Structures. 2019; 20: 689-701.

Borra S, Di Ciaccio A. Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods. Computational Statistics & Data Analysis. 2010; 54(12): 2976-2989.

Ismail K, Guadagnini M, Pilakoutas K. Strut-and-Tie Modeling of Reinforced Concrete Deep Beams. Journal of Structural Engineering (United States). 2018; 144(2).

ดาวน์โหลด

เผยแพร่แล้ว

2023-09-06

ฉบับ

ประเภทบทความ

บทความวิจัย