Molecular Docking Analysis on Epidermal Growth Factor Receptor Wild Type (EGFRwt) with Quinazoline Derivative Compounds as Tyrosine Kinase Inhibitors

Main Article Content

Herlina Rasyid
Ria Armunanto
Bambang Purwono


Molecular docking analysis for protein EGFRwt with quinazoline derivatives had been carried out. Six quinazoline derivatives obtained from previous experiment and two compounds predicted by QSAR were docked into EGFRwt using AutoDock program. Comparing between six compounds and erlotinib, these compounds have lower binding energies of -6.54, -6.48, -6.22, -6.24, -6.11 and -6.09, respectively than erlotinib (-4.84 kcal/mol). Docking result of two compounds resulted from QSAR exhibited lower binding energies of -4.85 and -5.96 kcal/mol than erlotinib. Binding pose from those compounds took place in amino acid residue Met769 in distance range of hydrogen bond 1.7 until 2.1 Å.

Article Details

How to Cite
Rasyid, H., Armunanto, R., & Purwono, B. (2017). Molecular Docking Analysis on Epidermal Growth Factor Receptor Wild Type (EGFRwt) with Quinazoline Derivative Compounds as Tyrosine Kinase Inhibitors. Applied Science and Engineering Progress, 10(4), 293–299. Retrieved from
Research Articles


[1] D. Behera, “Managing lung cancer in developing countries: Difficulties and solutions,” Indian Journal of Chest Disease and Allied Science, vol. 48, pp. 243–244, 2006.

[2] American Cancer Society, Global Cancer Facts & Figure, 2nd Edition, Atlanta: American Cancer Society, 2011.

[3] N. Zhao, X. Zhang, H. Yang, J. Yang, and Y. Wu, “Efficacy of epidermal growth factor receptor inhibitiors versus chemotherapy as second-line treatment in advanced non-smallcell lung cancer with wild-type EGFR: A metaanalysis of randomized controlled clinical trials,” Lung Cancer, vol. 85, pp. 66–73, Jul. 2014.

[4] Y. Chen, Y. Luo, C. Wu, Y. Lee, R. Perng, and J. Whang-Peng, “Erlotinib or chemotherapy in second-line or later treatment of tumor EGFR wild-type pulmonary adenocarcinoma patients,” Journal of Cancer Research and Practice, vol. 2, no.1, pp. 3–11, Mar. 2015.

[5] J. Baselga, “Why the epidermal growth factor receptor? The rationale for cancer therapy,” Oncologist, vol. 7, Supplement 4, pp. 2–8, Aug. 2002.

[6] R. S. M. Ismail, N. S. M. Ismail, S. Abuserii, and D. A. A. El Ella, “Recent advances in 4-aminoquinazoline based scaffold derivatives targeting EGFR kinases as anticancer agents,” Future Journal of Pharmaceutical Sciences, vol. 2, pp. 9–19, Jun. 2016.

[7] F. A. Shepherd, J. R. Pereira, T. Ciuleanu, E. H. Tan, V. Hirsh, S. Thongprasert, D. Campos, S. Maoleekoonpiroj, M. Smylie, R. Martins, M. van Kooten, M. Dediu, B. Findlay, D. Tu, D. Johnston, A. Bezjak, G. Clark, P. Santabárbara, and L. Seymour, “Erlotinib in previously treated non–small-cell lung cancer,” The New England Journal of Medicine, vol. 2, no. 353, pp. 123–132, Jul. 2005.

[8] D. Li, L. Ambrogio, T. Shimamura, S. Kubo, M. Takahashi, L. R. Chirieac, R. F. Padera, G. L. Shapiro, A. Baum, F. Himmelsbach, W. J. Rettig, M. Meyerson, F. Solca, H. Greulich, and K. K. Wong, “BIBW2992; an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models,” Oncogene, vol. 27, pp. 4702–4711, Aug. 2008.

[9] H. Cheng, S. K Nair, and B. W. Murray, “Recent progress on third generation covalent EGFR inhibitors,” Bioorganic & Medicinal Chemistry Letter, vol. 26, no. 8, pp. 1861–1868, Apr. 2016.

[10] J. Stamos, M. X. Sliwkowski, and C. Eigenbrot, “Structure of epidermal growth factor receptor kinase domain alone and in complex with a 4-aminoquinazoline inhibitor,” The Journal of Biological Chemistry, vol. 277, pp. 46265–46272, Nov. 2002.

[11] Y. Tu, Y. OuYang, S. Xu, Y. Zhu, G. Li, C. Sun, P. Zheng, and W. Zhu, “Design, synthesis, and docking studies of afaniib analogs bearing cinnamamide moiety as potent EGFR inhibitors,” Bioorganic & Medicinal Chemistry, vol. 24, pp. 1495–1503, Apr. 2016.

[12] A. J. Bridges, H. Zhou, D. R. Cody, G. W. Rewcastle, A. McMichael, H. D. H. Showalter, D. W Fry, A. J. Kraker, and W. A. Denny, “Tyrosine kinase inhibitors. 8. an unusually steep structure-activity relationship for analogues of 4-(3-Bromoanilino)-6,7-dimethoxyquinazoline (PD 153035), a potent inhibitor of the epidermal growth factor receptor,” Journal of Medicinal Chemistry, vol. 39, pp. 267–276, Jan. 1996.

[13] X. Qin, Z. Li, L. Yang, P. Liu, L. Hu, C. Zeng, and Z. Pan, “Discovery of new [1,4]dioxino [2,3-f]quinazoline-based inhibitors of EGFR including the T790M/L858R mutant,” Bioorganic & Medicinal Chemistry, vol. 24, pp. 2871–2881, Jul. 2016.

[14] H. Rasyid, R. Armunanto, and B. Purwono, “Study of Quinazoline Derivative Compound as Anticancer on EGFRWT Protein using Quantitative Structure-Activity Relationship (QSAR),” International Journal of Pharmaceutical Sciences Review and Research, vol. 42, pp. 44–49, Dec. 2016.

[15] Y. Xu, Y. Cao, H. Ma, H. Li, and G. Ao, “Design, synthesis, and molecular docking of α, β-unsaturated cyclohexanone analogous of curcumin as potent EGFR inhibitors with antiproliferative activity,” Bioorganic & Medicinal Chemistry, vol. 21, pp. 388–394, Jan. 2013.

[16] I. S. Yadav, P. P. Nadekar, S. Shrivastava, A. Sangamwar, A. Chaudhury, and S.M. Agarwal, “Ensemble docking and molecular dynamics identify knoevenagel curcumin derivatives with potent anti-EGFR activity,” Gene, vol. 539, pp. 82–90, April 2014.

[17] S. F. Sousa, P. A. Fernandes, and M. J. Ramos, “Protein-ligand docking: Current status and future challenges,” Proteins, vol. 65, no. 1, pp. 15–26, Oct. 2006.

[18] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09, Inc., Wallingford CT, 2016.

[19] G. M. Morris, R. Huet, W. Lindstrom, M. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, “Autodock4 and autoDockTools4: Automated docking with selective reseptor flexibility,” Journal of Computational Chemistry, vol. 30, no. 16, pp. 2785–2791, Dec. 2009.

[20] R. Huey and G. M. Morris, Using Autodock with AutoDockTools: A tutorial, La Jolla, California USA: The Scripps Research Institute, Molecular Graphics Laboratory, 2008, pp. 54-56

[21] G. Verma, M. F. Khan, W. Akhtar, M. W. Alam, M. Akhter, O. Alam, S. M. Hasan, and M. Shaquiquzzaman, “Pharmacophore modeling, 3D-QSAR, docking and ADME prediction of quinazoline based EGFR inhibitors,” Arabian Journal of Chemistry, Article in Press, Sep. 2016.