Preparation and Properties of Electrospun Fibers of Titanium Dioxide-loaded Polylactide/Polyvinylpyrrolidone Blends
Main Article Content
Abstract
Nanofibers of polylactide (PLA)/polyvinylpyrrolidone (PVP) blends loaded with titanium dioxide (TiO2) particles have been prepared by an electrospinning technique. TiO2 particles are formed by sol-gel mechanisms from titanium (IV) iso-propoxide (TTIP) precursor. Effect of TiO2 formation rate on properties of the fibers are examined by adding iso-propyl alcohol (iPOH) to slow down the TiO2 precipitation process. The use of iPOH produces fiber mats consisting of slightly bigger and smoother filaments, but smaller-sized embedded TiO2 particles. Both materials show a distinct UV absorption characteristic of TiO2 at λmax 300 nm, which can be applied in catalytic applications. Degradation behaviors of the materials in phosphate buffer solutions have also been investigated. The materials have high potential for use as epoxidation catalysts for conversion of vegetable oils to polymeric building blocks and plasticizers.
Article Details
References
[2] F. Carosio, S. Colonna, A. Fina, G. Rydzek, J. Hemmerlé, L. Jierry, P. Schaaf, and F. Boulmedais, “Efficient gas and water vapor barrier properties of thin poly(lactic acid) packaging films: Functionalization with moisture resistant nafion and clay multilayers,” Chemistry of Materials, vol. 26, no. 19, pp. 5459–5466, 2014.
[3] G. Colomines, V. Ducruet, C. Courgneau, A. Guinault, and S. Domenek, “Barrier properties of poly(lactic acid) and its morphological changes induced by aroma compound sorption,” Polymer International, vol. 59, no. 6, pp. 818–826, 2010.
[4] F. G. Torres, S. N. Nazhat, S. H. Sheikh Md Fadzullah, V. Maquetd, and A. R. Boccaccini, “Mechanical properties and bioactivity of porous PLGA/TiO2 nanoparticle-filled composites for tissue engineering scaffolds,” Composites Science and Technology, vol. 67, no. 6, pp. 1139–1147, 2007.
[5] A. Buzarovska, C. Gualandi, A. Parrilli, and M. Scandola, “Effect of TiO2 nanoparticle loading on poly(l-lactic acid) porous scaffolds fabricated by TIPS,” Composites Part B: Engineering, vol. 81, pp. 189–195, 2015.
[6] K. K. Gupta, P. K. Mishra, P. Srivastava, M. Gangwar, G. Nath, and P. Maiti, “Hydrothermal in situ preparation of TiO2 particles onto poly(lactic acid) electrospun nanofibres,” Applied Surface Science, vol. 264, pp. 375–382, 2013.
[7] G. Kale, R. Auras, S. P. Singh, and R. Narayan, “Biodegradability of polylactide bottles in real and simulated composting conditions,” Polymer Testing, vol. 26, no. 8, pp. 1049–1061, 2007.
[8] K. Fukushima, C. Abbate, D. Tabuani, M. Gennari, and G. Camino, “Biodegradation of poly(lactic acid) and its nanocomposites,” Polymer Degradation and Stability, vol. 94, no. 10, pp. 1646–1655, 2009.
[9] A. Buzarovska and A. Grozdanov, “Biodegradable poly(L-lactic acid)/TiO2 nanocomposites: Thermal properties and degradation,” Journal of Applied Polymer Science, vol. 123, no. 4, pp. 2187–2193, 2012.
[10] N. Nakayama and T. Hayashi, “Preparation and characterization of poly(l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability,” Polymer Degradation and Stability, vol. 92, no. 7, pp. 1255–1264, 2007.
[11] P. Singh, K. Mondal, and A. Sharma, “Reusable electrospun mesoporous ZnO nanofiber mats for photocatalytic degradation of polycyclic aromatic hydrocarbon dyes in wastewater,” Journal of Colloid and Interface Science, vol. 394, pp. 208–215, 2013.
[12] K. Mondal, M. A. Ali, V. V. Agrawal, B. D. Malhotra, and A. Sharma, “Highly sensitive biofunctionalized mesoporous electrospun TiO2 nanofiber based interface for biosensing,” ACS Applied Materials & Interfaces, vol. 6, no. 4, pp. 2516−2527, 2014.
[13] W.-C. Lin, W.-D. Yang, and S.-Y. Jheng, “Photocatalytic degradation of dyes in water using porous nanocrystalline titanium dioxide,” Journal of the Taiwan Institute of Chemical Engineers, vol. 43, pp. 269–274, 2012.
[14] C. Chawengkijwanich and Y. Hayata, “Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests,” International Journal of Food Microbiology, vol. 123, pp. 288–292, 2008.
[15] N. Singh, K. Mondal, M. Misra, A. Sharmaab, and R. K. Gupta, “Quantum dot sensitized electrospun mesoporous titanium dioxide hollow nanofibers for photocatalytic applications,” RSC Advances, vol. 6, no. 53, pp. 48109–48119, 2016.
[16] M. A. Ali, K. Mondal, Y. Wang, H. Jiang, N. K. Mahal, M. J. Castellano, A. Sharma, and L. Dong, “In situ integration of graphene foam-titanium nitride based bio-scaffolds and microfluidic structures for soil nutrient sensors,” Lab on a Chip, vol. 17, no. 2, pp. 274–285, 2017.
[17] K. Mondal, S. Bhattacharyya, and A. Sharma, “Photocatalytic degradation of naphthalene by electrospun mesoporous carbon-doped anatase TiO2 nanofiber mats,” Industrial & Engineering Chemistry Research, vol. 53, no. 49, pp. 18900−18909, 2014.
[18] Md. A. Ali, K. Mondal, Y. Jiao, S. Oren, Z. Xu, A. Sharma, and L. Dong, “Microfluidic immunobiochi1p for detection of breast cancer biomarkers using hierarchical composite of porous graphene and titanium dioxide nanofibers,” ACS Applied Materials & Interfaces, vol. 8, no. 32, pp. 20570−20582, 2016.
[19] C. Man, C. Zhang, Y. Liu, W. Wang, W. Ren, L. Jiang, F. Reisdorffer, T. P. Nguyen, and Y. Dan, “Poly (lactic acid)/titanium dioxide composites: Preparation and performance under ultraviolet irradiation,” Polymer Degradation and Stability, vol. 97, no. 6, pp. 856–862, 2012.
[20] K. Mondal, J. Kumar, and A. Sharma, “TiO2-nanoparticles-impregnated photocatalytic macroporous carbon films by spin coating,” Nanomaterials and Energy, vol. 2, no. 3, pp. 121–133, 2013.
[21] Y. Hong, Y. Li, X. Zhuang, X. Chen, and X. Jing, “Electrospinning of multicomponent ultrathin fibrous nonwovens for semi-occlusive wound dressings,” Journal of Biomedical Materials Research Part A, vol. 89, no. 2, pp. 345–354, 2009.
[22] K. I. M. da Silva, J. A. Fernandes, E. C. Kohlrausch, J. Dupont, M. J. L. Santos, and M. P. Gil, “Structural stability of photodegradable poly(l-lactic acid)/PE/TiO2 nanocomposites through TiO2 nanospheres and TiO2 nanotubes incorporation,” Polymer Bulletin, vol. 71, no. 5, pp. 1205–1217, 2014.
[23] N. G. Shimpi, M. Borane, and S. Mishra, “TiO2/polystyrene core–shell nanoparticles as fillers for LLDPE/PLA blend: Development, and morphological, thermal and mechanical properties,” Polymer Bulletin, vol.73, no. 11, Nov. 2016.
[24] A. Buasri, G. Buranasing, R. Piemjaiswang, S. Yousatit, and V. Loryuenyong, “Effect of titanium dioxide nanoparticles on mechanical and thermal properties of poly(lactic acid) and poly(butylene succinate) blends,” Advances in Science and Technology, vol. 96, pp. 33–38, 2014.
[25] C. N. Hsiao and K. S. Huang, “Synthesis, characterizat ion, and appl icat ions of polyvinylpyrrolidone/SiO2 hybrid materials,” Journal of Applied Polymer Science, vol. 96, no. 5, pp. 1936–1942, 2005.
[26] F. Haaf, A. Sanner, and F. Straub, “Polymers of N-Vinylpyrrolidone: Synthesis, characterization and uses,” Polymer Journal, vol. 17, no. 1, pp. 143–152, 1985.
[27] W. Zhuang, J. Liu, J. H. Zhang, B. X. Hu, and J. Shen, “Preparation, characterization, and properties of TiO2/PLA nanocomposites by in situ polymerization,” Polymer Composites, vol. 30, no. 8, pp. 1074–1080, 2009.
[28] N. A. Ali and F. T. M. Noori, “Gas barrier properties of biodegradable polymer nanocomposites films,” Chemistry and Materials Research, vol. 6, no. 1, pp. 44–51, 2014.
[29] Y.-B. Luo, X.-L. Wang, and Y.-Z. Wang, “Effect of TiO2 nanoparticles on the long-term hydrolytic degradation behavior of PLA,” Polymer Degradation and Stability, vol. 97, no. 5, pp. 721–728, 2012.
[30] C. Thammawong, S. Buchatip, A. Petchsuk, P. Tangboriboonrat, N. Chanunpanich, M. Opaprakasit, P. Sreearunothai, and P. Opaprakasit, “Electrospinning of poly(l-lactide-co-dl-lactide) copolymers: Effect of chemical structures and spinning conditions,” Polymer Engineering and Science, vol. 54, no. 2, pp. 472–480, 2014.
[31] P. Sriromreun, A. Petchsuk, M. Opaprakasit, and P. Opaprakasit, “Standard methods for characterizations of structure and hydrolytic degradation of aliphatic/aromatic copolyesters,” Polymer Degradation and Stability, vol. 98, no. 1, pp. 169–176, 2013.