Microwave Sensors Based on Coplanar Waveguide Loaded with Split Ring Resonators: A Review

  • Supakorn Harnsoongnoen The Biomimicry for Sustainable Agriculture, Health, Environment and Energy Research Unit, Department of Physics, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
Keywords: Microwave sensor, Coplanar waveguide, Split ring resonator, Physical, Chemical, Biological

Abstract

This article reviews the application of physical, chemical and biological sensing of materials via microwave sensors based on a coplanar waveguide (CPW) loaded with a split ring resonator (SRR). Many CPWs loaded with SRR structures from the literature are reviewed in this article. CPWs loaded with many shapes of resonators have been proposed, such as circular, square and rectangular-shaped SRRs and CSRRs based on a paired and an array, folded stepped impedance (SIR), square and circular electric – LC (ELC) SRRs, circular, square, rectangular and golden ratio spiral S-shaped SRRs, diamond-shaped tapered SRRs, horn-shaped SRRs and others. The working principle for each device is briefly described and compared. The strength of this article is to introduce the application of microwave sensors based on CPWs loaded with SRRs for measurement and characterization of physical, chemical and biological materials through electromagnetic interaction.

Downloads

Download data is not yet available.

References

[1] B. Kapilevich and B. Litvak, “Optimized microwave sensor for online concentration measurements of binary liquid mixtures,” IEEE Sensors Journal, vol. 11, no. 10, pp. 2611–2616, Oct. 2011.

[2] W. Withayachumnankul, K. Jaruwongrungsee, C. Fumeaux, and D. Abbott, “Metamaterial-inspired multichannel thin-film sensor,” IEEE Sensors Journal, vol. 12, no. 5, pp. 1455–1458, May 2012.

[3] G. Gennarelli, S. Romeo, M. R. Scarfi, and F. Soldovieri, “A microwave resonant sensor for concentration measurements of liquid solutions,” IEEE Sensors Journal, vol. 13, no. 5, pp. 1857–1864, May 2013.

[4] T. Chretiennot, D. Dubuc, and K. Grenier, “A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 2, pp. 972–978, Feb. 2013.

[5] M. H. Zarifi and M. Daneshmand, “Liquid sensing in aquatic environment using high quality planar microwave resonator,” Sensors and Actuators B: Chemical, vol. 225, pp. 517–521, Mar. 2016.

[6] J. C. Gallop and W. Radcliffe, “Shape and dimensional measurement using microwaves,” Journal of Physics E: Scientific Instruments, vol. 19, no. 6, pp. 413, 1986.

[7] S. O. Nelson and S. Trabelsi, “Principles for microwave moisture and density measurement in grain and seed,” Journal of Microwave Power and Electromagnetic Energy, vol. 39, no. 2, pp. 107–117, Sep. 2004.

[8] J. Naqui and F. Matrin, “Transmission lines loaded with bisymmetric resonators and their application to angular displacement and velocity sensors,” IEEE Transactions on Microwave Theory and Techniques, vol. 16, no. 12, pp. 4700–4713, Dec. 2013.

[9] O. Heaviside, Electromagnetic Theory Volume I. London, England: The Electrician, 1893, pp. 359.

[10] D. M. Pozar, Microwave Engineering, 2nd ed., New York: John Wiley & Sons,1998, pp. 104.

[11] F. R. S. Lord Rayleigh, “On the passage of electric waves through tubes, or the vibrations of dielectric cylinders,” Philosophical Magazine, vol. 43, pp. 125–132, Feb. 1897.

[12] M. M. Radmanesh, RF & Microwave Design Essentials: Engineering Design and Analysis from DC to Microwaves. Bloomington: AuthorHouse, 2007, pp. 208.

[13] K. S. Packard, “The origin of waveguides: A case of multiple rediscovery,” IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 9, pp. 961–969, Sep. 1984.

[14] M. N. Sadiku, Elements of Electromagnetics. New York: Oxford University Press, 2005.

[15] C. P. Wen, “Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 17, no. 12, pp. 1087–1090, Dec. 1969.

[16] R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems. New York: John Wiley & Sons, 2001.

[17] J. Naqui, M. Duran-Sindreu, and F. Martin, “Alignment and position sensors based on split ring resonators,” Sensors, vol. 12, pp. 11790– 11797, Aug. 2012.

[18] A. K. Horestani, D. Abbott, and C. Fumeaux, “Rotation sensor based on horn-shaped split ring resonator,” IEEE Sensors Journal, vol. 13, no. 8, pp. 3014–3015, Aug. 2013.

[19] A. K. Horestani, C. Fumeaux, S. F. Al-Sarawi, and D. Abbott, “Displacement sensor based on diamond-shaped tapered split ring resonator,” IEEE Sensors Journal, vol. 13, no. 4, pp. 1153– 1160, Apr. 2013.

[20] A. K. Horestani, M. Duran-Sindreu, J. Naqui, C. Fumeaux, and F. Martin, “Coplanar waveguides loaded with s-shaped split-ring resonators: Modeling and application to compact microwave filters,” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1349–1352, Jul. 2014.

[21] C. D. Abeyrathne, M. N. Halgamuge, P. M. Farrell, and E. Skafidas, “Performance analysis of on-chip coplanar waveguide for in Vivo dielectric analysis,” IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 3, pp. 641–647, Mar. 2013.

[22] J. Naqui, M. Duran-Sindreu, and F. Martin, “Novel sensors based on the symmetry properties of split ring resonators (SRRs),” Sensors, vol. 11, no. 8, pp. 7545–7553, Jul. 2011.

[23] S. Harnsoongnoen, U. Charoen-In, S. Pattitanang, C. Auntarin, and N. Angkawisittpan, “Angle sensor based on golden spiral–shaped tapered ring resonator using finite difference time-domain method,” Applied Mechanics and Materials, vol. 781, pp. 462–465, Aug. 2015.

[24] S. Harnsoongnoen and N. Angkawisittpan, “Angular displacement sensor based on coplanar waveguide (CPWs) loaded with s-shaped golden spiral-tapered split ring resonators (SGS-SRRs),” Procedia Computer Science, vol. 86, pp. 75–78, Mar. 2016.

[25] P. Juan-Garcia and J. M. Torrents, “Measurement of mortar permittivity during setting using a coplanar waveguide,” Measurement Science and Technology, vol. 21, pp. 2285–2288, Mar. 2010.

[26] S. S. Stuchly and C. E. Bassey, “Microwave coplanar sensors for dielectric measurements,” Measurement Science and Technology, vol. 9, pp. 1324–1329, Apr. 1998.

[27] S. Harnsoongnoen and A. Wanthong, “Real-time monitoring of sucrose, sorbitol, D-glucose and D-fructose concentration by electromagnetic sensing,” Food Chemistry, vol. 232, pp. 566–570, Oct. 2017.

[28] S. Harnsoongnoen and A. Wanthong, “Coplanar waveguide transmission line loaded with electric- LC resonator for determination of glucose concentration sensing,” IEEE Sensors Journal, vol. 17, no. 6, pp. 1635–1640, Mar. 2017.

[29] S. Harnsoongnoen and A. Wanthong, “Coplanar waveguides loaded with a split ring resonatorbased microwave sensor for aqueous sucrose solutions,” Measurement Science and Technology, vol. 27, pp. 015103, 2016.

[30] Y. F. Chen, H. W. Wu, Y. H. Hong, and H. Y. Lee, “40 GHz RF biosensor based on microwave coplanar waveguide transmission line for cancer cells (HepG2) dielectric characterization,” Biosensors and Bioelectronics, vol. 61, pp. 417– 421, Nov. 2014.

[31] C. A. Dutu, A. Vlad, C. Roda-Neve, I. Avram, G. Sandu, J. P. Raskin, and S. Melinte, “Surveying colloid sedimentation by coplanar waveguides,” Nanotechnology, vol. 27, pp. 1–6, Jun. 2016.

[32] Chithra, S. Pallavi, and A. A. Prince, “RF MEMSbased biosensor for pathogenic bacteria detection,” BioNanoScience, vol. 3, pp. 321–328, Sep. 2013.

[33] L. Lijie and D. Uttamchandani, “A microwave dielectric biosensor based on suspended distributed MEMS transmission lines,” IEEE Sensors Journal, vol. 9, no. 12, pp. 1825–1830, Dec. 2009.

[34] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi, vol. 10, no. 4, pp. 509–514, 1968.

[35] J. B. Pendry, A. T. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Physical Review Letters, vol. 76, pp. 4773–4776, Jun. 1996.

[36] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075–2084, Nov. 1999.

[37] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Physical Review Letters, vol. 84, pp. 4184–4187, May 2000.

[38] R. W. Ziolkwoski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 7, pp. 1516–1529, Jul. 2003.

[39] W. Xu, L. W. Li, H. Y. Yao, T. S. Yeo, and Q. Wu, “Extraction of constitutive relation tensor parameters of SRR structures using transmission line theory,” Journal of Electromagnetic Waves and Applications, vol. 20, no. 1, pp. 13–25, Jan. 2006.

[40] H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averit, “Active terahert metamaterial devices,” Nature, vol. 444, no. 7119, pp. 597–600, Nov. 2006.

[41] W. Withayachumnankuland and A. Derek, “Metamaterials in the terahertz regime,” IEEE Photonics Journal, vol. 1, no. 2, pp. 99–118, Aug. 2009.

[42] K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New Journal of Physics, vol. 7, pp. 168, Aug. 2005.

[43] A. Ebrahimi, W. Withayachumnankul, S. F. Al- Sarawi, and D. Abbott, “Compact dual-mode wideband filter based on complementary splitring resonator,” IEEE Microwave and Wireless Components Letters, vol. 24, no. 3, pp. 152–154, Mar. 2014.

[44] J. Martel, R. Marques, F. Falcone, J. D. Baena, F. Medina, F. Martin, and M. Sorolla, “A new LC series element for compact bandpass filter design,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 5, pp. 210–212, May 2004.

[45] P. Velez, J. Naqui, M. Duran-Sindreu, J. Bonache, and F. Martin, “Broadband microstrip bandpass filter based on open complementary split ring resonators,” International Journal of Antennas and Propagation, vol. 2012, pp. 1–6, Oct. 2012.

[46] A. Ebrahimi, W. Withayachumnankul, S. F. Al- Sarawi, and D. Abbott, “Dual-mode behavior of the complementary electric-LC resonators loaded on transmission line: Analysis and applications,” Journal of Applied Physics, vol. 116, pp. 083705-1 –083705-7, Aug. 2014.

[47] Z. Jaksic, S. Vukovic, J. Matovic, and D. Tanaskovic, “Negative refractive index metasurfaces for enhanced biosensing,” Materials, vol. 4, pp. 1–36, Dec. 2011.

[48] D. Schurig, J. J. Mock, and D. R. Smith, “Electricfield- coupled resonators for negative permittivity metamaterials,” Applied Physics Letters, vol. 88, pp. 041109, Jan. 2006.

[49] M. Duran-Sindreu, J. Naqui, F. Paredes, J. Bonache, and F. Marti, “Electrically small resonators for planar metamaterial, microwave circuit and antenna design: A comparative analysis,” Applied Sciences, vol. 2, pp. 375–395, Apr. 2012.

[50] S. Bagiante, F. Enderli, J. Fabianska, H. Sigg, and T. Feurer, “Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps,” Scientific Reports, vol. 5, pp. 8051, Jan. 2015.

[51] H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Left-handed material composed of only S-shaped resonators,” Physical Review E, vol. 70, pp. 057605-1–057605-4, Nov. 2004.

[52] N. Hassan, B. H. Ahmad, M. Z. A. Abd-Aziz, Z. Zakaria, M. A. Othman, A. R. Othman, M. Yusoff, and K. Jusoff, “Rice husk truncated pyramidal microwave absorber using quadruple p-spiral split ring resonator (QPS-SRR),” Australian Journal of Basic and Applied Sciences, vol. 7, no. 3, pp. 56–63, Feb. 2013.

[53] F. Martin, F. Falcone, J. Bonache, R. Marques, and M. Sorolla, “Split ring resonator based left handed coplanar waveguide,” Applied Physics Letters, vol. 83, pp. 4652–4654, Nov. 2003.

[54] F. Falcone, T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M, Sorolla, “Effective negative -ε stop-band microstrip lines based on complementary split ring resonators,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 6, pp. 280–282, Jun. 2004.

[55] J. D. Baena, J. Bonache, F. Martin, R. Marques, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia, R. Gil, M. Flores-Portillo, and M. Sorolla, “Equivalentcircuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1451–1461, Apr. 2005.

[56] F. Falcone, F. Martin, J. Bonache, R. Marques, and M. Sorolla, “Coplanar waveguide structures loaded with split-ring resonators,” Microwave and Optical Technology Letters, vol. 40, no. 1, pp. 3–6, Jan. 2004.

[57] J. Naqui, M. Duran-Sindreu, and F. Martin, “Selective mode suppression in coplanar waveguide using metamaterial resonators,” Applied Physics A, vol. 109, no. 4, pp. 1053–1058, Dec. 2012.

[58] J. Naqui, M. Duran-Sindreu, and F. Martin, “On the symmetry properties of coplanar waveguides loaded with symmetric resonators: Analysis and potential applications,” in Proceedings IEEE/ MTT-S International Microwave Symposium Digest, 2012, pp. 1–3.

[59] J. Naqui and F. Martin, “Microwave sensors based on symmetry properties of resonatorloaded transmission lines,” Journal of Sensors, vol. 2015, pp. 1–10, Jan. 2015.

[60] J. Naqui, J. Coromina, A. Karami-Horestani, C. Fumeaux, and F. Martin, “Angular displacement and velocity sensors based on coplanar waveguides (CPWs) loaded with s-shaped split ring resonators (S-SRRs),” Sensors, vol. 15, pp. 9628–9650, Apr. 2015.

[61] B. Wu, C. H. Liang, Q. Li, and P. Y. Qin, “Novel dual-band filter incorporating defected SIR and microstrip SIR,” IEEE Microwave and Wireless Components Letters, vol. 18, pp. 392–394, Jun. 2008.

[62] F. J. Herraiz-Martinez, L. E. Garcia-Munoz, D. Gonzalez-Ovejero, V. González-Posadas, and D. Segovia-Vargas, “Dual-frequency printed dipole loaded with split ring resonators,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 137–140, Jan. 2009.

[63] F. J. Herraiz-Martinez, G. Zamora, F. Paredes, F. Martin, and J. Bonache, “Multiband printed monopole antennas loaded with open complementary split ring resonators for PANs and WLANs,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 1528–1531, Dec. 2011.

[64] F. J. Herraiz-Martinez, F. Paredes, G. Zamora, F. Martin, and J. Bonache, “Dual-band printed dipole antenna loaded with open complementary split-ring resonators (OCSRRs) for wireless applications,” Microwave and Optical Technology Letters, vol. 54, pp. 1014–1017, Apr. 2012.

[65] S. Preradovic, I. Balbin, N. C. Karmakar, and G. F. Swiegers, “Multiresonator-based chipless RFID system for low-cost item tracking,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, pp. 1411–1419, May 2009.

[66] S. Preradovic and N. Chandra-Karmakar, “Chipless RFID: Bar code of the future,” IEEE Microwave Magazine, vol. 11, pp. 87–98, Dec. 2010.

[67] A. Ebrahimi, W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, “High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization,” IEEE Sensors Journal, vol. 14, pp. 1345–1351, May 2014.

[68] A. Ebrahimi, W. Withayachumnankul, S. F. Al- Sarawi, and D. Abbott, “Metamaterial-inspired rotation sensor with wide dynamic range,” IEEE Sensors Journal, vol. 14, pp. 2609–2614, Aug. 2014.

[69] W. Withayachumnankul, K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, and D. Abbott, “Metamaterial-based microfluidic sensor for dielectric characterization,” Sensors and Actuators A: Physical, vol. 189, pp. 233–237, Jan. 2013.
Published
2019-12-19
Section
Review Articles