# Study on Local Composition of Binary n-Alkane for Precise Estimation of Wax Disappearance Temperature

## Main Article Content

## Abstract

This work aims to investigate the influence of the pure component parameters of n-alkanes and assumptions for the solid-phase on the accuracy of wax disappearance temperature (WDT) estimation, using five binary mixtures, consist of n-hexane + n-hexadecane, n-octadecane + n-hexadecane, n-tridecane + n-hexane, n-hexadecane + n-tetradecane, and n-octadecane + n-undecane. Perturbed Chain Form of the Statistical Associating Fluid Theory (PC-SAFT) Equation of State (EoS) was implemented to describe solid-liquid equilibrium (SLE) and evaluate its capability for the WDT model. Furthermore, regular solution theory was also applied to SLE description to confirm the prediction from PC-SAFT. The estimated results were compared with the experimental data to examine the accuracy of the provided solution. Reasonable agreement between the predicted and the experimental results was observed. The results were analyzed and theoretical improvement on solutions were suggested.

## Article Details

*Applied Science and Engineering Progress*,

*14*(2), 271–283. https://doi.org/10.14416/j.asep.2020.02.002

## References

[2] H. M. Meighani, C. Ghotbi, and T. J. Behbahani, “A modified thermodynamic modeling of wax precipitation in crude oil based on PC-SAFT model,” Fluid Phase Equilibria, vol. 429, pp. 313–324, 2016.

[3] S. Parsa, J. Javanmardi, S. Aftab, and K. Nasrifar, “Experimental measurements and thermodynamic modeling of wax disappearance temperature for the binary systems n-C14H30+ n-C16H34, n-C16H34+ n-C18H38 and n-C11H24+ n-C18H38,” Fluid Phase Equilibria, vol. 388, pp. 93–99, 2015.

[4] K. S. Pedersen, P. Skovborg, and H. P. Roenningsen, “Wax precipitation from North Sea crude oils. 4. Thermodynamic modeling,” Energy & Fuels, vol. 5, no. 6, pp. 924–932, 1991.

[5] P. Leelavanichkul, M. D. Deo, and F. V. Hanson, “Crude oil characterization and regular solution approach to thermodynamic modeling of solid precipitation at low pressure,” Petroleum Science and Technology, vol. 22, no. 7–8, pp. 973–990, 2004.

[6] H. Y. Ji, B. Tohidi, A. Danesh, and A. C. Todd, “Wax phase equilibria: Developing a thermodynamic model using a systematic approach,” Fluid Phase Equilibria, vol. 216, no. 2, pp. 201–217, 2004.

[7] H. P. Roenningsen, B. Bjoerndal, A. B. Hansen, and W. B. Pedersen, “Wax precipitation from North Sea crude oils: 1. Crystallization and dissolution temperatures, and Newtonian and non-Newtonian flow properties,” Energy & Fuels, vol. 5, no. 6, pp. 895–908, 1991.

[8] R. O. Dunn, “Crystallization behavior of fatty acid methyl esters,” Journal of the American Oil Chemists’ Society, vol. 85, no. 10, pp. 961–972, 2008.

[9] F. Tumakaka, J. Gross, and G. Sadowski, “Thermodynamic modeling of complex systems using PC-SAFT,” Fluid Phase Equilibria, vol. 228– 229, pp. 89–98, 2005.

[10] A. Grenner, G. M. Kontogeorgis, N. von Solms, and M. L. Michelsen, “Modeling phase equilibria of alkanols with the simplified PC-SAFT equation of state and generalized pure compound parameters,” Fluid Phase Equilibria, vol. 258, no. 1, pp. 83–94, 2007.

[11] M. Okuniewski, K. Paduszyński, and U. Domańska, “(Solid + liquid) equilibrium phase diagrams in binary mixtures containing terpenes: New experimental data and analysis of several modelling strategies with modified UNIFAC (Dortmund) and PC-SAFT equation of state,” Fluid Phase Equilibria, vol. 422, pp. 66–77, 2016.

[12] F. Tumakaka, I. V. Prikhodko, and G. Sadowski, “Modeling of solid–liquid equilibria for systems with solid-complex phase formation,” Fluid Phase Equilibria, vol. 260, no. 1, pp. 98–104, 2007.

[13] J. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, Molecular Thermodynamics of Fluid- Phase Equilibria. 3rd ed., New Jersey: Prentice Hall PTR, 1998.

[14] M. Benziane, K. Khimeche, A. Dahmani, S. Nezar, and D. Trache, “Experimental determination and prediction of (solid + liquid) phase equilibria for binary mixtures of heavy alkanes and fatty acids methyl esters,” Journal of Thermal Analysis and Calorimetry, vol. 112, no. 1, pp. 229–235, 2013.

[15] J. Gross and G. Sadowski, “Perturbed-chain saft: An equation of state based on a perturbation theory for chain molecules,” Industrial & Engineering Chemistry Research, vol. 40, no. 4, pp. 1244–1260, 2001.

[16] K. W. Won, “Thermodynamics for solid solutionliquid- vapor equilibria: Wax phase formation from heavy hydrocarbon mixtures,” Fluid Phase Equilibria, vol. 30, pp. 265–279, 1986.

[17] E. Stefanis and C. Panayiotou, “Prediction of hansen solubility parameters with a new groupcontribution method,” International Journal of Thermophysics, vol. 29, no. 2, pp. 568–585, 2008.

[18] K. S. Pedersen, “Prediction of cloud point temperatures and amount of wax precipitation,” SPE Production & Facilities, vol. 10, no. 1, pp. 46– 49, 1995.

[19] M. Wu and S. Yalkowsky, “Estimation of the molar heat capacity change on melting of organic compounds,” Industrial & Engineering Chemistry Research, vol. 48, no. 2, pp. 1063–1066, 2009. [20] G. D. Pappa, E. C. Voutsas, K. Magoulas, and D. P. Tassios, “Estimation of the differential molar heat capacities of organic compounds at their melting point,” Industrial & Engineering Chemistry Research, vol. 44, no. 10, pp. 3799–3806, 2005.

[21] J. F. Messerly, G. B. Guthrie Jr., S. S. Todd, and H. L. Finke, “Low-temperature thermal data for pentane, n-heptadecane, and n-octadecane. Revised thermodynamic functions for the n-alkanes, C5-C18,” Journal of Chemical and Engineering Data, vol. 12, no. 3, pp. 338–346, 1967.

[22] D. R. Douslin and H. M. Huffman, “Lowtemperature thermal data on the five isomeric hexanes1,” Journal of the American Chemical Society, vol. 68, no. 9, pp. 1704–1708, 1946.

[23] E. S. Domalski and E. D. Hearing, “Heat capacities and entropies of organic compounds in the condensed phase. volume III,” Journal of Physical and Chemical Reference Data, vol. 25, no. 1, pp. 1– 525, 1996.

[24] D. R. Stull, “A semi-micro calorimeter for measuring heat capacities at low temperatures1,” Journal of the American Chemical Society, vol. 59, no. 12, pp. 2726–2733, 1937.

[25] H. M. Huffman, G. S. Parks, and M. Barmore, “Thermal data on organic compounds. X. further studies on the heat capacities, entropies and free energies of hydrocarbons,” Journal of the American Chemical Society, vol. 53, no. 10, pp. 3876–3888, 1931.

[26] G. S. Parks, H. M. Huffman, and S. B. Thomas, “Thermal data on organic compounds. VI. the heat capacities, entropies and free energies of some saturated, non-benzenoid hydrocarbons1,” Journal of the American Chemical Society, vol. 52, no. 3, pp. 1032–1041, 1930.

[27] H. L. Finke, M. E. Gross, G. Waddington, and H. M. Huffman, “Low-temperature thermal data for the nine normal paraffin hydrocarbons from octane to hexadecane,” Journal of the American Chemical Society, vol. 76, no. 2, pp. 333–341, 1954.

[28] G. S. Parks and D. W. Light, “Thermal data on organic compounds. XIII. the heat capacities and entropies of n-tetradecane and the hydroxybenzoic acids. The relative free energies of some benzenoid position isomers,” Journal of the American Chemical Society, vol. 56, no. 7, pp. 1511–1513, 1934.

[29] P. Claudy and J. M. Letoffe, “Phase transitions in even n-alkane CnH2n+ 2, n= 16–28 Characterization by differential calorimetric analysis and by thermooptical analysis. Effect of deuteration,” Calorimetrie et Analyse Thermique, vol. 22, pp. 281–290, 1991.

[30] D. Mondieig, F. Rajabalee, V. Metivaud, H. A. J. Oonk, and M. A. Cuevas-Diarte, “n-alkane binary molecular alloys,” Chemistry of Materials, vol. 16, no. 5, pp. 786–798, 2004.

[31] G. S. Parks, G. E. Moore, M. L. Renquist, B. F. Naylor, L. A. McClaine, P. S. Fujii, and J. A. Hatton, “Thermal data on organic compounds. XXV. Some heat capacity, entropy and free energy data for nine hydrocarbons of high molecular weight,” Journal of the American Chemical Society, vol. 71, no. 10, pp. 3386–3389, 1949.

[32] P. Barbillon, L. Schuffenecker, J. Dellacherie, D. Balesdent, and M. Dirand, “Variation d'enthalpie subie de 260 K à 340 K par les n-paraffines, comprises entre l'octadécane (n-C18) et l'hexacosane (n-C26),” Journal de Chimie Physique, vol. 88, pp. 91–113, 1991.

[33] S. I. Kolesnikov and Z. I. Syunyaev, “Phase transitions in the melting and crystallization of n-C18H38 and n-C20H42,” Zhurnal Pikladnoi Khimii (Leningrad), vol. 58, no. 10, pp. 2267–2271, 1985.

[34] N. Bender, N. S. M. Cardozo, and R. d. P. Soares, “Avoiding binary interaction parameters in the GC-PC-SAFT model with a parametrization based in VLE and IDAC data: n-Alkanes and 1-alkanols,” Fluid Phase Equilibria, vol. 412, pp. 9–20, 2016.

[35] X. Liang, K. Thomsen, W. Yan, and G. M. Kontogeorgis, “Prediction of the vapor–liquid equilibria and speed of sound in binary systems of 1-alkanols and n-alkanes with the simplified PC-SAFT equation of state,” Fluid Phase Equilibria, vol. 360, pp. 222–232, 2013.

[36] C. W. Hoerr and H. J. Harwood, “Solubilities of high molecular weight aliphatic compounds in n-hexane,” The Journal of Organic Chemistry, vol. 16, no. 5, pp. 779–791, 1951.

[37] U. Domańska and K. Kniaż, “Solid-Liquid Equilibria of Normal Alkanes (C 16, C 18, C 20)+ Hexane,+ 3-Methylpentane,+ 2, 2-Dimethylbutane, or+ Cyclohexane,” Selected Data on Mixtures, vol. 2, pp. 83–92, 1990.

[38] P. Morawski, J. A. Coutinho, and U. Domańska, “High pressure (solid + liquid) equilibria of n-alkane mixtures: Experimental results, correlation and prediction,” Fluid Phase Equilibria, vol. 230, no. 1–2, pp. 72–80, 2005.