A Review on the Philosophies for the Advancement of Polymer-based Composites: Past, Present and Future Perspective
Main Article Content
Abstract
Research has been consider as a tool for recycling existing scientific ideas to promote improved concepts for the development of new materials. All technological innovations have links with the ancient philosophies that are being adapted progressively. Given this, composite material development remains one of the most excellent methods to influence the environment to meet human needs. Various studies have shown that polymer-based composites have emerged as the leading group of composites that are fast displacing all other materials in several applications due to their inherent properties. Polymer-based composites can be entirely synthetic, completely natural, or a mixture of synthetic and natural-based. However, a recent desire for eco-friendly materials has shifted attention from complete synthetic-based materials to natural fibers, whether in a partial or a total replacement. Thus, this review provides an overview of research trends from synthetic to natural based polymer composites. The article also highlights the different intrinsic classifications of composites, their developments, areas of applications, and their projections into the future in line with considerations for environment and applications.
Article Details
References
[2] R. Badrinath and T. Senthilvelan, “Comparative investigation on mechanical properties of banana and sisal reinforced polymer based composites,” Procedia Material Science, vol. 5, pp. 2263– 2272, 2014, doi: 10.1016/j.mspro.2014.07.444.
[3] T. G. Y. Gowda, S. M. Rangappa, K. S. Bhat, P. Madhu, P. Senthamaraikannan, and B. Yogesha, “Polymer matrix natural fiber composites: An overview,” Cogent Engineering, vol. 5, no. 1, pp. 1– 13, 2018, doi: 10.1080/23311916.2018.1446667.
[4] M. Y. Hashim, M. N. Roslan, A. M. Amin, A. Mujahid, and A. Zaidi, “Mercerization treatment parameter effect on natural fiber reinforced polymer matrix composite : A brief review,” World Academy of Science, Engineering and Technology, vol. 6, no. 8, pp. 1638–1644, 2012.
[5] K. N. Keya, N. A. Kona, F. A. Koly, K. M. Maraz, M. N. Islam, and R. A. Khan, “Natural fiber reinforced polymer composites: History, types, advantages, and applications,” Material Science and Engineering: R:Reports, vol. 1, no. 2, pp. 69– 87, 2019, doi: 10.25082/mer.2019.02.006.
[6] I. O. Oladele, O. O. Daramola, and S. Fasooto, “Effect of chemical treatment on the mechanical properties of sisal fibre reinforced polyester composites,” Leonardo Electronic Journal of Practices and Technology, vol. 13, no. 24, pp. 1–12, 2014.
[7] A. A. Adediran, K. K. Alaneme, I. O. Oladele, and E. T. Akinlabi, “Structural characterization of silica based carbothermal derivatives of rice husk,” Procedia Manufacturing, vol. 35, pp. 436–441, 2019, doi: 10.1016/j.promfg.2019.05.063.
[8] R. Porta, “The plastics sunset and the bio-plastics sunrise,” Coatings, vol. 9, no. 8, pp. 526–535, 2019, doi: 10.3390/coatings9080526.
[9] K. L. Pickering, M. G. A. Efendy, and T. M. Le, “A review of recent developments in natural fibre composites and their mechanical performance,” Composite Part A: Applied Science and Manufacturing, vol. 83, pp. 98–112, 2016, doi: 10.1016/j.compositesa.2015.08.038.
[10] S. M. Rangappa, S. Siengchin, and H. N. Dhakal, “Green-composites: Ecofriendly and sustainability,” Applied Science and Engineering Progress, vol. 13, no. 3, pp. 183–184, 2020, doi: 10.14416/j. asep.2020.06.001.
[11] F. P. La Mantia and M. Morreale, “Green composites: A brief review,” Composite. Part A: Applied Science and Manufacturing, vol. 42, no. 6, pp. 579–588, 2011, doi: 10.1016/j.compositesa. 2011.01.017.
[12] G. S. Mann, L. P. Singh, P. Kumar, and S. Singh, “Green composites: A review of processing technologies and recent applications,” Journal of Thermoplastic Composite Materials, vol. 33, no. 8, pp. 1145–1171, 2020, doi: 10.1177/0892 705718816354.
[13] R. A. Kurien, D. P. Selvaraj, M. Sekar, and C. P. Koshy, “Green composite materials for green technology in the automotive industry,” IOP Conference Series: Material Science and Engineering, vol. 872, no. 1, 2020, doi: 10. 1088/1757-899X/872/1/012064.
[14] M. P. M. Dicker, P. F. Duckworth, A. B. Baker, G. Francois, M. K. Hazzard, and P. M. Weaver, “Green composites: A review of material attributes and complementary applications,” Composite Part A: Applied Science Manufacturing, vol. 56, pp. 280–289, 2014, doi: 10.1016/j. compositesa.2013.10.014.
[15] D. K. Rajak, D. D. Pagar, P. L. Menezes, and E. Linul, “Fiber-reinforced polymer composites: Manufacturing, properties, and applications,” Polymers (Basel), vol. 11, no. 10, pp. 1–37, 2019, doi: 10.3390/polym11101667.
[16] M. Jawaid and S. Siengchin, “Hybrid composites: A versatile materials for future,” Applied Science and Engineering Progress, vol. 12, no. 4, p. 223, 2019, doi: 10.14416/j.asep.2019.09.002.
[17] A. V Ellis and N. H. Voelcker, “Surface modification for PDMS-based microfluidic devices,” Electrophoresis, vol. 33, pp. 89–104, 2012, doi: 10.1002/elps.201100482.
[18] D. A. Van Den Ende, H. J. Van De Wiel, W. A. Groen, and S. Van Der Zwaag, “Direct strain energy harvesting in automobile tires using piezoelectric PZT-polymer composites,” Smart Materials and Structure, vol. 21, no. 1, 2020, doi: 10.1088/0964-1726/21/1/015011.
[19] C. Brunel and A. Levinson, “Measuring environmental regulatory stringency,” OECD Trade and Environment Working Papers, vol. 5, pp. 1–43, 2013, doi: 10.1787/5k41t69f6f6d-en.
[20] J. Sauvage, “ Trade in services related to the environment,” OECD Trade and Environment Working Papers, vol. 61, pp. 1-69, 2016, doi: 10.1787/5jxrjn7xsnmq-en.
[21] J. Heitz, T. Gumpenberger, H. Kahr, and C. Romanin, “Adhesion and proliferation of human vascular cells on UV-light-modified polymers,” Biotechnolgy and Applied Biochemistry, vol. 69, pp. 59–69, 2004, doi: 10.1042/BA20030107
[22] Z. Guo, W. Liu, and B. L. Su, “Superhydrophobic surfaces: From natural to biomimetic to functional,” Journal of Colloid and Interface Science, vol. 353, no. 2, pp. 335–355, 2011, doi: 10.1016/j.jcis. 2010.08.047.
[23] A. M. Vandenbroucke, R. Morent, N. De Geyter, and C. Leys, “Non-thermal plasmas for noncatalytic and catalytic VOC abatement,” Journal of Hazardous Material, vol. 195, pp. 30–54, 2011, doi: 10.1016/j.jhazmat.2011.08.060.
[24] A. Baidya, M. A. Ganayee, S. J. Ravindran, and K. C. Tam, “Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nano fiber building blocks,” ACS Nano, vol. 11, no. 11, pp. 11091–11099, 2017, doi: 10.1021/ acsnano.7b05170.
[25] C. A. Cáceres, N. Mazzola, M. França, and S. V Canevarolo, “Controlling in-line the energy level applied during the corona treatment,” Polymer Testing, vol. 31, no. 4, pp. 505–511, 2012, doi: 10.1016/j.polymertesting.2012.02.002.
[26] V. Moghimifar, A. Raisi, and A. Aroujalian, “Surface modification of polyethersulfone ultra filtration membranes by corona plasma-assisted coating TiO2 nanoparticles,” Journal of Membrane Science, vol. 461, pp. 69–80, 2014, doi: 10.1016/j. memsci.2014.02.012.
[27] M. Pascual, R. Sanchis, L. Sánchez, D. García, and R. Balart, “ Surface modification of low density polyethylene (LDPE) film using corona discharge plasma for technological applications,” Journal of Adhesion Science and Technolgy, vol. 22, no 13, pp. 1425–1442, 2008, doi: 10.1163/ 156856108X305723.
[28] Z. B. Guzel-seydim, A. K. Greene, and A. C. Seydim, “Use of ozone in the food industry,” LWT - Food Science and Technology, vol. 37, no 4, pp. 453–460, 2004, doi: 10.1016/j.lwt.2003.10. 014.
[29] Byjus, “Synthetic fibres - definition, concept, types & examples with videos,” 2021. [Online]. Available: https://byjus.com/chemistry/syntheticfibre/
[30] Editorial Today, “Types of synthetic fabrics and their properties,” 2021. [Online]. Available: https://www.streetdirectory.com/etoday/-elcujl. html
[31] Vedantu, “Types of synthetic fibres with properties and uses,” 2021. [Online]. Available: https:// www.vedantu.com/chemistry/types-of-syntheticfibres
[32] N. Saba and M. Jawaid, “3. Epoxy resin based hybrid polymer composites materials,” in Hybrid Polymer Composite Materials. Cambridge, England: Woodhead Publishing, 2017, pp. 57–82, doi:10.1016/B978-0-08-100787-7.00003-2.
[33] H. S. S. Shekar and M. Ramachandra, “Green composites: A review,” Materials Today: Proceedings, vol. 5, no. 1, pp. 2518–2526, 2018, doi: 10.1016/j.matpr.2017.11.034.
[34] Science Online, “Thermoplastics properties, types, uses, advantages and disadvantages,” 2021. [Online]. Available: https://www.online-sciences. com/industries/thermoplastics-propertiestypes- uses-advantages-and-disadvantages/
[35] M. Nurazzi and D. Laila, “A review: Fibres, polymer matrices and composites,” Pertanika Journal of Science and Technology, vol. 25. pp. 1085–1102, 2017.
[36] S. K. Nemani, R. K. Annavarapu, B. Mohammadian, A. Raiyan, and A. Sojoudi, “Surface modification of polymers: Methods and applications,” Advanced Materials Interfaces, vol.5, pp. 1–26, 2018, doi: 10.1002/admi.201801247.
[37] T. J. Reinhart, “Polymer-matrix composites,” Advanced Materials and Processess, vol. 1, pp. 39– 50, 1990, doi: 10.1016/b978-1-85573-473- 9.50008-4.
[38] K. Kaushik, R. B. Sharma, S. Agarwal, and H. Pradesh, “Review article natural polymers and their applications,” International Journal of Pharmaceutical Sciences, vol. 37, no. 5, pp. 30–36, 2016.
[39] T. P. Sathishkumar, J. Naveen, and S. Satheeshkumar, “Hybrid fiber reinforced polymer composites – A review,” Journal of Reinforced Plastics and Composites, vol. 33, pp. 454–471, Sep. 2014, doi: 10.1177/0731684413516393.
[40] I. O. Oladele, T. F. Omotosho, and A. A. Adediran, “Review article polymer-based composites: An indispensable material for present and future applications,” International Journal of Polymer Science, vol. 2020, pp. 1–12, 2020, doi:10.1155/2020/8834518.
[41] T. Gurunathan, S. Mohanty, and S. K. Nayak, “A review of the recent developments in biocomposites based on natural fibres and their application perspectives,” Composites Part A: Applied Science and Manufacturing. vol. 77, pp 1–25, 2015, doi: 10.1016/j.compositesa.2015.06.007.
[42] R. Mansour, H. Osmani, and N. Benseddiq, “Effect of chemical treatment on flexure properties of natural fiber-reinforced polymer composite,” Procedia Engineering, vol. 10, pp. 2092–2097, Dec. 2011, doi: 10.1016/j.proeng.2011.04.346.
[43] J. Araujo, “Thermal properties of high density polyethylene composites with natural fibres: Coupling agent effect,” Polymer Degradation and Stability, vol. 93, no. 10, pp. 1770–1775, Oct. 2008, doi: 10.1016/j.polymdegradstab. 2008.07.021.
[44] M. Abdelmouleh and S. Boufi, “Science and short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading,” Composites Science and Technology, vol. 67, pp. 1627–1639, 2007, doi: 10.1016/j.compscitech.2006.07.003.
[45] P. Mishra and S. K. Acharya, “Anisotropy abrasive wear behavior of bagasse fiber reinforced polymer composite,” International Journal of Engineering, Science and Technology, vol. 2, no. 11, pp. 104–112, 2010. doi: 10.4314/ijest. v2i11.64558.
[46] B. C. Simionescu and D. Ivanov, “Natural and synthetic polymers for designing composite materials,” in Handbook of Bioceramics and Biocomposites. Berlin, Germany: Springer, pp. 64–75, 2016, doi: 10.1007/978-3-319-09230- 0_11-12015.
[47] F. Donnaloja, E. Jacchetti, M. Soncini, and M. T. Raimondi, “Natural and synthetic polymers for bone,” Polymers, vol. 12, pp. 1–27, 2020, doi: 10.3390/polym12040905.
[48] M. Panizza, M. Natali, E. Garbin, V. Ducman, and S. Tamburini, “Optimization and mechanicalphysical characterization of geopolymers with construction and demolition waste (CDW) aggregates for construction products,” Construction and Building Materials, vol. 264, 2020, doi: doi. org/10.1016/j.conbuildmat.2020.120158.
[49] I. O. Oladele, “Effect of bagasse fibre reinforcement on the mechanical properties of polyester composites,” The Journal of the Association of Professional Engineers of Trinidad and Tobago, vol. 42, no. 1, pp. 12–15, 2014.
[50] A. K. Mohanty, M. A. Khan, and G. Hinrichsen, “Surface modication of jute and its infuence on performance of biodegradable jute-fabric / Biopol composites,” Composites Science and Technology, vol. 60, no. 7, pp. 1115–1124, 2000, doi: 10.1016/ S0266-3538(00)00012-9.
[51] M. V. Gangoiti and P. J. Peruzzo, “Cellulose nanocrystal reinforced acylglycerol-based polyurethane foams,” Express Polymer Letters, vol. 14, no. 7, pp. 638–650, 2020. doi: 10.3144/ expresspolymlett.2020.52.
[52] L. Bao, A. F. Yee, and C. Y. Lee, “Moisture absorption and hygrothermal aging in a bismaleimide resin,” Polymer, vol. 42, pp. 7327– 7333, 2001, doi: 10.1016/S0032-3861(01)00238-5.
[53] H. Sojoudi, H. Arabnejad, A. Raiyan, S. A. Shirazi, G. H. Mckinley, and K. K. Gleason, “Scalable and durable polymeric icephobic and hydrate-phobic coatings,” Soft Matter, vol. 14, no. 18, pp. 3425–3654, 2018, doi: 10.1039/ C8SM00225H.
[54] N. Encinas, M. Pantoja, and J. Abenojar, “Control of wettability of polymers by surface roughness modification,” Journal of Adhesion Science and Technology, vol. 24, no. 11–12, pp. 1869–1883, 2012, doi: 10.1163/016942410X511042.
[55] J. Saqib and I. H. Aljundi, “Membrane fouling and modification using surface treatment and layer-by-layer assembly of polyelectrolytes: State-of-the-art review,” Journal of Water Process Engineering, vol. 11, pp. 68–87, 2016, doi: 10.1016/j.jwpe.2016.03.009.
[56] S. Yoshida, K. Hagiwara, T. Hasebe, and A. Hotta, “Surface & coatings technology surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release,” Surface Coatings Technology, vol. 233, pp. 99–107, 2013, doi: 10.1016/j.surfcoat. 2013.02.042.
[57] M. Ma, Y. Mao, M. Gupta, K. K. Gleason, and G. C. Rutledge, “Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition,” Macromolecules, vol. 38, no. 23, pp. 9742–9748, 2005. doi:10.1021/ma0511189.
[58] I. A. Abu-isa and G. Motors, “Iodine treatment of nylon : Effect on metal plating of the polymer,” Journal of Applied Polymer Science, vol. 15, pp. 2865–2876, 1971. doi:10.1002/app.1971. 070151121.
[59] H. Coskun, A. ljabour, L. Uiberlacker, M. Strobel, S. Hild, C. Cobet, D. Farka, P. Stadler, and N. S. Sariciftci, “Chemical vapor deposition - based synthesis of conductive polydopamine thin-films,” Thin Solid Films, vol. 645, August 2017, pp. 320–325, 2018, doi: 10.1016/j.tsf. 2017.10.063.
[60] E. I. Corporation, M. Falls, R. Wolf, and A. C. Sparavigna, “Role of plasma surface treatments on wetting and adhesion,” Engineering, vol. 2, pp. 397–402, 2010, doi: 10.4236/eng.2010.26052.
[61] A. Reznickova, Z. Novotna, Z. Kolska, N. Slepickova, S. Rimpelova, and V. Svorcik, “Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene,” Materials Science and Engineering: C, vol. 52, pp. 259–266, 2015, doi: 10.1016/j.msec.2015. 03.052.
[62] R. Fader, J. Landwehr, M. Rumler, M. Rommel, A. J. Bauer, L. Frey, R. Völkel, M. Brehm, and A. Kraft, “Microelectronic engineering functional epoxy polymer for direct nano-imprinting of micro-optical elements,” Microelectronic Engineering, vol. 110, pp. 90–93, 2013, doi: 10.1016/j.mee.2013.02.030.
[63] E. Kraus, B. Baudrit, P. Heidemeyer, M. Bastian, O. V. Stoyanov, and I. A. Starostina, “Surface treatment of polymers by an ultraviolet laser,” Polymer Science Series D, vol. 9, no. 1, pp. 24–31, 2016, doi: 10.1134/S1995421216010093.
[64] X. Zhou, D. Yang, D. Ma, A. Vadim, T. Ahamad, and S. M. Alshehri, “Ultrahigh gain polymer photodetectors with spectral response from UV to near-infrared using ZnO nanoparticles as anode interfacial layer,” Advanced Functional Materials, vol. 26, pp. 6619-6626, 2016, doi: 10.1002/ adfm.201601980.
[65] A. Bhattacharya and B. N. Misra, “Grafting: A versatile means to modify polymers Techniques, factors and applications,” Progress in Polymer Science, vol. 29, pp. 767–814, 2018, doi: 10.1016/ j.progpolymsci.2004.05.002.
[66] H. Takehara, Y. Hadano, Y. Kanda, and T. Ichiki, “Effect of the thermal history on the crystallinity of poly (L-lactic Acid) during the micromolding process,” Micromachines, vol. 11, no. 5, 2020, doi: 10.3390/MI11050452.
[67] M. Park, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Large area dense nanoscale patterning of arbitrary surfaces,” Applied Physics Letters, vol. 79, no. 2, pp. 257–259, 2001, doi: 10.1063/ 1.1378046.
[68] M. N. Dickson, J. Tsao, E. I. Liang, N. I. Navarro, Y. R. Patel, and A. F. Yee, “Conformal reversal imprint lithography for polymer nanostructuring over large curved geometries,” Journal of Vacuum Science and Technology B, vol. 35, no. 2, p. 021602, 2017, doi: 10.1116/1.4974927.
[69] M. P. Aldred, A. E. A. Contoret, S. R. Farrar, S. M. Kelly, D. Mathieson, M. O'Neill, W. C. Tsoi, and P. Vlachos, “A full-color electroluminescent device and patterned photoalignment using lightemitting liquid crystals,” Advanced Materials, vol. 17, no. 11, pp. 1368–1372, 2005, doi: 10. 1002/adma.200500258.
[70] B. Nandan, B. K. Kuila, and M. Stamm, “Supramolecular assemblies of block copolymers as templates for fabrication of nanomaterials,” European Polymer Journal, vol. 47, no. 4, pp. 584–599, 2011, doi: 10.1016/j.eurpolymj. 2010.09.033.
[71] A. B. Nair and R. Joseph, “Eco-friendly biocomposites using natural rubber (NR) matrices and natural fiber reinforcements,” in Chemistry, Manufacture and Applications of Natural Rubber. Cambridge, England: Woodhead Publishing, 2014, doi:10.1533/9780857096913.2.249
[72] N. Venkatachalam, P. Navaneethakrishnan, R. Rajsekar, and S. Shankar, “Effect of pretreatment methods on properties of natural fiber composites: A review,” Polymers and Polymer Composites, vol. 24, no. 7, pp. 555–566, 2016, doi: 10. 1177/096739111602400715.
[73] M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, “Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview,” Composite Part B Enineering, vol. 43, no. 7, pp. 2883–2892, 2012, doi: 10.1016/j.compositesb. 2012.04.053.
[74] J. Artchomphoo and S. Rattanapan, “Maleated natural rubber as a coupling agent for sawdust powder filled natural rubber composites,” Advanced Materilas Research, vol. 770, pp. 181– 184, 2013, doi: 10.4028/www.scientific.net/ AMR.770.181.
[75] A. Paul, K. Joseph, and S. Thomas, “Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers,” Composite Science and Technology, vol. 57, no. 1, pp. 67–79, 1997, doi: 10.1016/S0266-3538(96)00109-1.
[76] K. Xie, H. Liu, and X. Wang, “Surface modification of cellulose with triazine derivative to improve printability with reactive dyes,” Carbohydrate Polymers, vol. 78, no. 3, pp. 538– 542, 2009, doi: 10.1016/j.carbpol.2009.05.013.
[77] A. Shalwan and B. F. Yousif, “In state of art: Mechanical and tribological behaviour of polymeric composites based on natural fibres,” Material Design, vol. 48, pp. 14–24, 2013, doi: 10. 1016/j.matdes.2012.07.014.
[78] S. Shinoj, R. Visvanathan, S. Panigrahi, and M. Kochubabu, “Oil palm fiber (OPF) and its composites: A review,” Industrial Crops Production, vol. 33, no. 1, pp. 7–22, 2011, doi: 10.1016/j. indcrop.2010.09.009.
[79] J. C. Bénézet, A. Stanojlovic-Davidovic, A. Bergeret, L. Ferry, and A. Crespy, “Mechanical and physical properties of expanded starch, reinforced by natural fibres,” Inusrial Crops Production, vol. 37, no. 1, pp. 435–440, 2012, doi: 10.1016/j.indcrop.2011.07.001.
[80] A. R. Kakroodi, S. Cheng, M. Sain, and A. Asiri, “Mechanical, thermal, and morphological properties of nanocomposites based on polyvinyl alcohol and cellulose nanofiber from Aloe vera rind,” Journal of Nanomaterials, vol. 2014, December, 2014, doi: 10.1155/2014/903498.
[81] Y. Pan and Z. Zhong, “A micromechanical model for the mechanical degradation of natural fiber reinforced composites induced by moisture absorption,” Mechanics of Materials, vol. 85. pp. 7–15, 2015, doi: 10.1016/j.mechmat.2015. 02.001.
[82] E. Jayamani, S. Hamdan, M. R. Rahman, and M. K. B. Bakri, “Investigation of fiber surface treatment on mechanical, acoustical and thermal properties of betelnut fiber polyester composites,” Procedia Engineering, vol. 97, pp. 545–554, 2014, doi: 10.1016/j.proeng.2014.12.282.
[83] M. Ramesh, T. S. A. Atreya, U. S. Aswin, H. Eashwar, and C. Deepa, “Processing and mechanical property evaluation of banana fiber reinforced polymer composites,” Procedia Engineering, vol. 97, pp. 563–572, 2014, doi: 10.1016/j.proeng. 2014.12.284.
[84] I. O. Oladele, I. O. Ibrahim, A. D. Akinwekomi, and S. I. Talabi, “Effect of mercerization on the mechanical and thermal response of hybrid bagasse fiber/CaCO3 reinforced polypropylene composites,” Polymer Testing, vol. 76, pp. 192– 198, February 2019, doi: 10.1016/j.polymertesting. 2019.03.021.
[85] Z. Yang, H. Peng, W. Wang, and T. Liu, “Crystallization behavior of poly(ε-caprolactone)/ layered double hydroxide nanocomposites,” Journal of Applied Polymer Science, vol. 116, no. 5, pp. 2658–2667, 2010, doi: 10.1002/app.
[86] N. Cordeiroa, M. Ornelasa, A. Ashorib, S. Sheshmanic, and H. Norouzic, “Investigation on the surface properties of chemically modified natural fibers using inverse gas chromatography,” Carbohydrate Polymer, vol. 87, no. 4, pp. 2367–2375, 2012, doi: 10.1016/j.carbpol.2011.11.001.
[87] M. L. Troedec, D. Sedan, C. Peyratout, J. P. Bonnet, A. Smith, R. Guinebretiere, V. Gloaguen, and P. Krauszc, “Influence of various chemical treatments on the composition and structure of hemp fibres,” Composite Part A: Applied Science and Manufacturing, vol. 39, no. 3, pp. 514–522, 2008, doi: 10.1016/j.compositesa.2007.12.001.
[88] I. Van de Weyenberg, J. Ivens, A. De Coster, B. Kino, E. Baetens, and I. Verpoest, “Influence of processing and chemical treatment of flax fibres on their composites,” Composite and Science Technology, vol. 63, no. 9, pp. 1241–1246, 2003, doi: 10.1016/S0266-3538(03)00093-9.
[89] F. Bateni, F. Ahmad, A. S. Yahya, and M. Azmi, “Performance of oil palm empty fruit bunch fibres coated with acrylonitrile butadiene styrene,” Construction and Building Materials, vol. 25, no. 4, pp. 1824–1829, 2011, doi: 10.1016/j. conbuildmat.2010.11.080.
[90] M. S. Sreekala and S. Thomas, “Effect of fibre surface modification on water-sorption characteristics of oil palm fibres,” Composite Science and Technology, vol. 63, no. 6, pp. 861–869, 2003, doi: 10.1016/S0266-3538(02)00270-1.
[91] S. N. Monteiro, V. Calado, R. J. S. Rodriguez, and F. M. Margem, “Thermogravimetric behavior of natural fibers reinforced polymer composites-An overview,” Material Science and Enineering A, vol. 557, pp. 17–28, 2012, doi: 10.1016/j.msea. 2012.05.109.
[92] G. George, E. T. Jose, D. Åkesson, M. Skrifvars, E. R. Nagarajan, and K. Joseph, “Viscoelastic behaviour of novel commingled biocomposites based on polypropylene/jute yarns,” Composite Part A: Applied Science and Manufacturing, vol. 43, no. 6, pp. 893–902, 2012, doi: 10.1016/j. compositesa.2012.01.019.
[93] V. Fiore, T. Scalici, and A. Valenza, “Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites,” Carbohydrates Polymer, vol. 106, no. 1, pp. 77– 83, 2014, doi: 10.1016/j.carbpol.2014.02.016.
[94] H. V Divya, L. L. Naik, and B. Yogesha, “Processing techniques of polymer matrix composites – A review,” International Journal of Engineering Research and General Science, vol. 4, no. 3, pp. 357–362, 2016.
[95] P. A. Sreekumar, J. M. Saiter, K. Joseph, G. Unnikrishnan, and S. Thomas, “Electrical properties of short sisal fiber reinforced polyester composites fabricated by resin transfer molding,” Composite Part A Applied Science and Manufacturing, vol. 43, no. 3, pp. 507–511, 2012, doi: 10.1016/j.compositesa.2011.11.018.
[96] M. Garg, S. Sharma, and R. Mehta, “Pristine and amino functionalized carbon nanotubes reinforced glass fiber epoxy composites,” Composite Part A: Applied Science and Manufacturing, vol. 76, pp. 92–101, 2015, doi: 10. 1016/j.compositesa.2015.05.012.
[97] L. A. L. Martins, F. L. Bastian, and T. A. Netto, “The effect of stress ratio on the fracture morphology of filament wound composite tubes,” Material Design, vol. 49, pp. 471–484, 2013, doi: 10.1016/ j.matdes.2013.01.026.
[98] G. Li, C. Zhang, Y. Wang, P. Li, Y. Yu, X. Jia, H. Liu, X. Yang, Z. Xue, and S. Ryu, “Interface correlation and toughness matching of phosphoric acid functionalized Kevlar fiber and epoxy matrix for filament winding composites,” Composite Science and Technology, vol. 68, no. 15–16, pp. 3208–3214, 2008, doi: 10.1016/j.compscitech. 2008.08.006.
[99] M. A. Khan, J. Ganster, and H. P. Fink, “Hybrid composites of jute and man-made cellulose fibers with polypropylene by injection moulding,” Composite Part A Applied Science and Manufacturing, vol. 40, no. 6–7, pp. 846–851, 2009, doi: 10.1016/j.compositesa.2009.04.015.
[100] N. Graupner, G. Ziegmann, F. Wilde, F. Beckmann, and J. Müssig, “Procedural influences on compression and injection moulded cellulose fibrereinforced polylactide (PLA) composites: Influence of fibre loading, fibre length, fibre orientation and voids,” Composite Part A Applied Science and Manufacturing, vol. 81, pp. 158–171, 2016, doi: 10.1016/j.compositesa.2015.10.040.
[101] T. Villmow, B. Kretzschmar, and P. Pötschke, “Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites,” Composite Science and Technology, vol. 70, no. 14, pp. 2045–2055, 2010, doi: 10.1016/j.compscitech.2010.07.021.
[102] F. M. Salleh, A. Hassan, R. Yahya, and A. D. Azzahari, “Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites,” Composite Part B Engineering, vol. 58, pp. 259–266, 2014, doi: 10.1016/j. compositesb.2013.10.068.
[103] J. Zhu, K. Chandrashekhara, V. Flanigan, and S. Kapila, “Manufacturing and mechanical properties of soy-based composites using pultrusion,” Compoite. Part A: Applied. Science and Manufacturing, vol. 35, no. 1, pp. 95–101, 2004, doi: 10.1016/j.compositesa.2003.08.007.
[104] P. J. Novo, J. F. Silva, J. P. Nunes, and A. T. Marques, “Pultrusion of fibre reinforced thermoplastic pre-impregnated materials,” Composite Part B Engineering, vol. 89, pp. 328–339, 2016, doi: 10. 1016/j.compositesb.2015.12.026.
[105] D. R. Mulinari, H. J. C. Voorwald, M. O. H. Cioffi, M. L. C. P. da Silva, T. G. da Cruz, and C. Saron, “Sugarcane bagasse cellulose/HDPE composites obtained by extrusion,” Composite Science and Technology, vol. 69, no. 2, pp. 214–219, 2009, doi: 10.1016/j.compscitech.2008.10.006.
[106] R. L. Zhang, B. Gao, W. T. Du, J. Zhang, H. Z. Cui, L. Liu, Q. H. Ma, C. G. Wang, and F. H. Li, “Enhanced mechanical properties of multiscale carbon fiber/epoxy composites by fiber surface treatment with graphene oxide/polyhedral oligomeric silsesquioxane,” Composite Part A: Applied Science and Manufacturing, vol. 84, pp. 455–463, 2016, doi: 10.1016/j.compositesa. 2016.02.021.
[107] T. Ogasawara, Y. Ishida, R. Yokota, T. Watanabe, T. Aoi, and J. Goto, “Processing and properties of carbon fiber/Triple-A polyimide composites fabricated from imide oligomer dry prepreg,” Composite Part A Applied Science and Manufacturing, vol. 38, no. 5, pp. 1296–1303, 2007, doi: 10.1016/j.compositesa.2006.11.007.
[108] M. A.-Ardakani, A. S. Milani, S. Yannacopoulos, and H. Borazghi, “A rapid approach for predication and discrete lay-up optimization of glass fiber/ polypropylene composite laminates under impact,” International Journal of Impact Engineering, vol. 84, pp. 134–144, 2015, doi: 10.1016/j. ijimpeng.2015.05.012.
[109] B. P. Rocky and A. J. Thompson, “Production of natural bamboo fibers-1: Experimental approaches to different processes and analyses,” Journal of the Textile Institute, vol. 109, no. 10, pp. 1381–1391, 2018, doi: 10.1080/00405000. 2018.1482639.
[110] D. Landgrebe, V. Kräusel, A. Rautenstrauch, A. Albert, and R. Wertheim, “Energy-efficiency in a hybrid process of sheet metal forming and polymer injection moulding,” Procedia CIRP, vol. 40, pp. 109–114, 2016, doi: 10.1016/j.procir. 2016.01.068.
[111] O. Faruk, A. K. Bledzki, H. P. Fink, and M. Sain, “Biocomposites reinforced with natural fibers: 2000–2010,” Progress in Polymer Science, vol. 37, no. 11, pp. 1552–1596, 2012, doi: 10.1016/j. progpolymsci.2012.04.003.
[112] N. Graupner, A. S. Herrmann, and J. Müssig, “Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas,” Composite Part A: Applied Science Manufacturing, vol. 40, no. 6–7, pp. 810–821, 2009, doi: 10.1016/j.compositesa.2009.04.003.
[113] K. Bocz, B. Szolnoki, A. Marosi, T. Tábi, M. W.- Przybylak, and G. Marosi, “Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system,” Polymer Degradabilty and Stability, vol. 106, pp. 63–73, 2014, doi: 10.1016/j.polymdegradstab.2013. 10.025.
[115] G. Bharathiraja, S. Jayabal, S. Kalyana Sundaram, S. Rajamuneeswaran, and B. H. Manjunath, “Mechanical behaviors of rice husk and boiled egg shell particles impregnated coir-polyester composites,” Macromolecular Symposia, vol. 361, no. 1, pp. 136–140, 2016, doi: 10.1002/masy. 201400245.
[114] M. Carus, “The european hemp industry: cultivation, processing and applications for fibres, shivs, seeds and flowers,” European Industrial Hemp Association, vol. 1994, pp. 1–9, 2017.
[116] S. M. Luz, A. R. Gonçalves, and A. P. Del’Arco, “Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites,” Composite Part A: Applied Science and Manufacturing, vol. 38, no. 6, pp. 1455–1461, 2007, doi: 10.1016/j. compositesa.2007.01.014.
[117] D. Verma, P. C. Gope, A. Shandilya, A. Gupta, and M. K. Maheshwari, “Coir fibre reinforcement and application in polymer composites: A review,” Journal of Material and Environmental Science, vol. 4, no. 2, pp. 263–276, 2013.
[118] P. Ramadevi, D. Sampathkumar, C. V. Srinivasa, and B. Bennehalli, “Effect of alkali treatment on water absorption of single cellulosic abaca fiber,” BioResources, vol. 7, no. 3, pp. 3515–3524, 2012, doi: 10.15376/biores.7.3.3515-3524.
[119] S. Parbin, N. K. Waghmare, S. K. Singh, and S. Khan, “Mechanical properties of natural fiber reinforced epoxy composites: A review,” Procedia Computer Science, vol. 152, pp. 375–379, 2019, doi: 10.1016/j.procs.2019.05.003.
[120] I. O. Oladele, B. A. Makinde-Isola, A. A. Adediran, M. O. Oladejo, A. F. Owa, and T. M. A. Olayanju, “Mechanical and wear behaviour of pulverised poultry eggshell/sisal fiber hybrid reinforced epoxy composites,” Material Reseach Express, vol. 7, no. 4, 2020, doi: 10.1088/2053-1591/ ab8585.
[121] G. I. Williams and R. P. Wool, “Composites from natural fibers and soy oil resins,” Applied Composite Materials, vol. 7, no. 5–6, pp. 421–432, 2000, doi: 10.1023/A:1026583404899.
[122] D. N. Saheb and J. P. Jog, “Natural fiber polymer composites: A review,” Advanced Polymer Technology, vol. 18, no. 4, pp. 351–363, 1999.
[123] T. Nguyen, E. Zavarin, and E. M. Barrall, “Thermal analysis of lignocellulosic materials Part I. Unmodified Materials,” Journal of Macromolecular Science, Part C, vol. 20, no. 1, pp. 1–65, 1981, doi: 10.1080/00222358108080014.