Effects of Aging and Infill Pattern on Mechanical Properties of Hemp Reinforced PLA Composite Produced by Fused Filament Fabrication (FFF)

Main Article Content

Alperen Dogru
Ayberk Sozen
Gokdeniz Neser
M. Ozgur Seydibeyoglu


Additions of reinforcing natural fibers to polymer matrices provides an increase in mechanical properties. In addition, bio composite materials contribute to the sustainable ecosystem with their ease of recyclability. The effect of accelerated aging on the mechanical properties of PLA matrix biocomposite specimens has been observed in previous research. However, the effect of accelerated aging on the mechanical properties and the resulting mass loss of the material produced with fused filament fabrication (FFF) has been discussed for the first time in this study. Aging was applied to the biocomposite consisted of 10% hemp and PLA matrix produced at a constant rate, parallel to the tensile direction and cross (+/– 45°) angle, and the tensile stress and mass loss were examined. The aging effect has been observed even from the first week. Specimens with parallel printing to tensile direction showed a lower tensile performance than cross printing one. Since the structure in the laminates is quite durable, the adhesion performance in the laminate or through thickness direction has been low. Natural fibers are found so highly hygroscopic that chemical treatments will improve the interface and improve the mechanical properties.

Article Details

How to Cite
Dogru, A., Sozen, A., Neser, G., & Seydibeyoglu, M. O. (2021). Effects of Aging and Infill Pattern on Mechanical Properties of Hemp Reinforced PLA Composite Produced by Fused Filament Fabrication (FFF). Applied Science and Engineering Progress, 14(4), 651–660. https://doi.org/10.14416/j.asep.2021.08.007
Research Articles


[1] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Compososites Part B: Engineering, vol. 143, pp. 172–196, 2018, doi: 10.1016/j.compositesb.2018.02.012.

[2] S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt, “Polymers for 3D printing and customized additive manufacturing,” Chemical Reviews, vol.117, pp. 10212–10290, 2017, doi: 10.1021/acs.chemrev.7b00074.

[3] J. Torres, J. Cotelo, J. Karl, and A. P. Gordon, “Mechanical property optimization of FDM PLA in shear with multiple objectives,” The Journal of the Minerals, Metals & Materials Society, vol. 67, pp. 1183–1193, 2015, doi: 10.1007/s11837-015- 1367-y.

[4] K. V. Wong and A. Hernandez, “A review of additive manufacturing,” ISRN Mechanical Engineering, vol. 2012, pp. 1–10, 2012, doi: 10.5402/2012/208760.

[5] J. Tian, R. Zhang, Y. Wu, and P. Xue, “Additive manufacturing of wood flour/polyhydroxyalkanoates (PHA) fully bio-based composites based on micro-screw extrusion system,” Materials and Design, vol. 199, p. 109418, 2021, doi:10.1016/ j.matdes.2020.109418.

[6] T. Cersoli, B. Yelamanchi, E. MacDonald, J. G. Carrillo, and P. Cortes, “3D printing of a continuous fiber-reinforced composite based on a coaxial Kevlar/PLA filament,” Composite and Advanced Materials, vol. 30, pp. 263498332110000, 2021, doi: 10.1177/26349833211000058.

[7] D. D. Camacho, P. Clayton,W. J. O’Brien, C. Seepersad, M. Juenger, R. Ferron, and S. Salamone, “Applications of additive manufacturing in the construction industry – A forward-looking review,” Automation in Construction, vol. 89, pp. 110– 119, 2018, doi: 10.1016/j.autcon.2017.12.031.

[8] O. A. Mohamed, S. H. Masood, and J. L. Bhowmik, “Optimization of fused deposition modeling process parameters: A review of current research and future prospects,” Advances in Manufacturing, vol. 3, pp. 42–53, 2015, doi:10.1007/s40436- 014-0097-7.

[9] J. Liu, L. Sun, W. Xu, Q. Wang, S. Yu, and J. Sun, “Current advances and future perspectives of 3D printing natural-derived biopolymers,” Carbohydrate Polymer, vol. 207, pp. 297–316, 2019, doi: 10.1016/j.carbpol.2018.11.077.

[10] S. K. Bhatia and K. W. Ramadurai, 3D Printing and Bio-Based Materials in Global Health. New York: Springer, 2017, pp. 123–125.

[11] M. Delgado-Aguilar, F. Julián, Q. Tarrés, J. A. Méndez, P. Mutjé, and F. X. Espinach, “Bio composite from bleached pine fibers reinforced polylactic acid as a replacement of glass fiber reinforced polypropylene, macro and micromechanics of the Young’s modulus,” Composites Part B: Engineering, vol. 125, pp. 203–210, 2017, doi:10.1016/j.compositesb.2017.05.058.

[12] S. M. Rangappa, S. Siengchin, and H. N. Dhakal, “Green-composites: Ecofriendly and sustainability,” Applied Science and Engineering Progress, vol. 13, no. 3, pp. 183–184, 2020, doi: 10.14416/j. asep.2020.06.001.

[13] A. N. Netravali and S. Chabba, “Composites get greener,” Materials Today, vol. 6, pp. 22–29, 2003, doi:10.1016/S1369-7021(03)00427-9.

[14] A. May-Pat, A. Valadez-González, and P. J. Herrera- Franco, “Effect of fiber surface treatments on the essential work of fracture of HDPE-continuous henequen fiber-reinforced composites,” Polymer Testing, vol. 32, pp. 1114–1122, 2013, doi:10.1016/ j.polymertesting.2013.06.006.

[15] X. Li, L. G. Tabil, and S. Panigrahi, “Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review,” Journal of Polymers and The Environment, vol. 15, pp. 25–33, 2007, doi:10.1007/s10924-006-0042-3.

[16] M. Barczewski, O. Mysiukiewicz, and A. Kloziński, “Complex modification effect of linseed cake as an agricultural waste filler used in high density polyethylene composites,” Iranian Polymer Journal, vol. 27, pp. 677–688, 2018, doi:10.1007/s13726-018-0644-3.

[17] V. Mazzanti, F. Mollica, and N. E. Kissi, “Rheological and mechanical characterization of polypropylenebased wood plastic composites,” Polymer Composites, vol. 37, pp. 3460–3473, 2015, doi:10.1002/pc.23546.

[18] V. Mazzanti, M. S. de Luna, R. Pariante, F. Mollica, and G. Filippone, “Natural fiber-induced degradation in PLA-hemp biocomposites in the molten state,” Composites Part A: Appilied Science and Manufacturing, vol. 137, p. 105990, 2020, doi: 10.1016/j.compositesa.2020.105990.

[19] D. Deb and J. M. Jafferson, “Natural fibers reinforced FDM 3D printing filaments,” Materials Today Proceedings, vol. 46, pp. 1308–1318, 2021, doi: 10.1016/j.matpr.2021.02.397.

[20] W. Xu, A. Pranovich, P. Uppstu, X. Wang, D. Kronlund, J. Hemming, H. Öblom, N. Moritz, M. Preis, N. Sandler, S. Willför, and C. Xua, “Novel biorenewable composite of wood polysaccharide and polylactic acid for three dimensional printing,” Carbohydrate Polymers, vol. 187, pp. 51–58, 2018, doi: 10.1016/j.carbpol.2018.01.069.

[21] N. Lu, R. H. Swan, and I. Ferguson, “Composition, structure, and mechanical properties of hemp fiber reinforced composite with recycled high-density polyethylene matrix,” Journal of Composite Materials, vol. 46, pp. 1915–1924, 2012, doi: 10.1177/0021998311427778.

[22] S. H. Aziz and M. P. Ansell, “The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 - polyester resin matrix,” Composites Science and Technology, vol. 64, pp. 1219–1230, 2004, doi: 10.1016/j.compscitech. 2003.10.001.
[23] K. L. Pickering and M. G. A. Efendy, “Preparation and mechanical properties of novel bio-composite made of dynamically sheet formed discontinuous harakeke and hemp fibre mat reinforced PLA composites for structural applications,” Industrial Crops and Products, vol. 84, pp. 139–150, 2016, doi: 10.1016/j.indcrop.2016.02.005.

[24] S. Sair, A. Oushabi, A. Kammouni, O. Tanane, Y. Abboud, and A. E. Bouari, “Mechanical and thermal conductivity properties of hemp fiber reinforced polyurethane composites,” Case Studies in Construction Materials, vol. 8, pp. 203–212, 2018, doi: 10.1016/j.cscm.2018.02.001.

[25] V. Mazzanti, R. Pariante, A.Bonanno, O. R. de Ballesteros, F. Mollica, and G. Filippone, “Reinforcing mechanisms of natural fibers in green composites: Role of fibers morphology in a PLA/hemp model system,” Composites Science and Technology, vol. 180, pp. 51–59, 2019, doi: 10.1016/j.compscitech.2019.05.015.

[26] M. Jawaid and S. Siengchin, “Hybrid composites: A versatile materials for future,” Applied Science and Engineering Progress, vol. 12, no. 4, p. 223, 2019, doi: 10.14416/j.asep.2019.09.002.

[27] A. Pappu, K. L. Pickering, and V. K. Thakur, “Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding,” Industrial Crops and Products, vol. 137, pp. 260–269, 2019, doi: 10.1016/j.indcrop.2019. 05.040.

[28] M. S. Islam, K. L. Pickering, and N. J. Foreman, “Influence of accelerated ageing on the physicomechanical properties of alkali-treated industrial hemp fibre reinforced poly(lactic acid) (PLA) composites,” Polymer Degradation and Stability, vol. 95, pp. 59–65, 2010, doi: 10.1016/j.poly mdegradstab.2009.10.010.

[29] F. Sarasini, J. Tirillò, C. Sergi, M. C. Seghini, L. Cozzarini, and N. Graupner, “Effect of basalt fibre hybridisation and sizing removal on mechanical and thermal properties of hemp fibre reinforced HDPE composites,” Composite Structures, vol. 188, pp. 394–406, 2018, doi: 10.1016/j.compstruct.2018.01.046.

[30] X. Xiao, V. S. Chevali, P. Song, D. He, and H. Wang, “Polylactide/hemp hurd biocomposites as sustainable 3D printing feedstock,” Composites Science and Technology, vol. 184, p. 107887, 2019, doi: 10.1016/j.compscitech.2019.107887.

[31] C. G. Schirmeister, T. Hees, E. H. Licht, and R. Mülhaupt, “3D printing of high density polyethylene by fused filament fabrication,” Additive Manufacturing, vol. 28, pp. 152–159, 2019, doi: 10.1016/j.addma.2019.05.003.

[32] S. M. K. Thiagamani, S. Krishnasamy, and S. Siengchin, “Challenges of biodegradable polymers: An environmental perspective,” Applied Science and Engineering Progress, vol. 12, no. 3, pp. 149, 2019, doi: 10.14416/j.asep. 2019.03.002.