Mechanical, Absorption and Swelling Properties of Vinyl Ester Based Natural Fibre Hybrid Composites
Main Article Content
Abstract
Natural fibres such as Banana (B), Jute (J) and Kenaf (K) were hybridized in different stacking sequences in vinyl ester. The composites with hybridized fibres were tested to evaluate their tensile, flexural and impact properties. Further, they were also tested for their water absorption and thickness swelling behavior. The hybridization of the fibre mats had an encouraging outcome on the mechanical behavior. The JKBKBJ hybrid composite possessed the maximum tensile strength (34.12 MPa) while maximum stiffness of 1.667 GPa was observed for the KBJJBK hybrid composites. The observations from the flexural testing indicated that the hybrid composites resisted the flexural load for higher displacement. All the hybrid configurations presented better impact strength over the composites reinforced with kenaf and jute fibres. Among the hybrid composites investigated, the KJBBJK hybrid composite displayed highest impact strength (12.32 kJ/m2). The improved strength, stiffness and lower moisture absorption properties make the composites with hybridized fibres a potential candidate for the light weight structural applications.
Article Details
References
[2] G. Rajeshkumar, S. A. Seshadri, G. L. Devnani, M. R. Sanjay, S. Siengchin, J. P. Maran, N. A. Al-Dhabi, P. Karuppiah, V. A. Mariadhas, and N. Sivarajasekar, “Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites–A comprehensive review,” Journal of Cleaner Production, vol. 310, p. 127483, Aug. 2021.
[3] G. Rajeshkumar, G. L. Devnani, J. P. Maran, M. R. Sanjay, S. Siengchin, N. A. Al-Dhabi, and K. Ponmurugan, “Characterization of novel natural cellulosic fibers from purple bauhinia for potential reinforcement in polymer composites,” Cellulose, vol. 28, pp. 5373–5385, May 2021.
[4] G. Rajeshkumar, S. A. Seshadri, S. Ramakrishnan, S. M. Rangappa, S. Siengchin, and K. C. Nagaraja, “A comprehensive review on natural fiber/ nano‐clay reinforced hybrid polymeric composites: Materials and technologies,” Polymer Composites, May 2021, doi: 10.1002/pc.26110.
[5] L. Mohammed, M. N. M. Ansari, G. Pua, M. Jawaid, and M. S. Islam, “A review on natural fiber reinforced polymer composite and its applications,” International Journal of Polymer Science, vol. 2015, pp. 1–15, Oct. 2015.
[6] A. Atiqah, M. Chandrasekar, T. S. M. Kumar, K. Senthilkumar, and M. N. M. Ansari, “Characterization and interface of natural and synthetic hybrid composites,” in Encyclopedia of Renewable and Sustainable Materials. Amsterdam, Netherlands: Elsevier, 2020, pp. 389–400.
[7] M. Boopalan, M. Niranjanaa, and M. J. Umapathy, “Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites,” Composites Part B: Engineering, vol. 51, pp. 54–57, Aug. 2013.
[8] D. K. K. Cavalcanti, M. D. Banea, J. S. S. Neto, R. A. A. Lima, L. F. M. da Silva, and R. J. C. Carbas, “Mechanical characterization of intralaminar natural fibre-reinforced hybrid composites,” Composites Part B: Engineering, vol. 175, Oct. 2019, Art. no. 107149.
[9] C. N. Kumar, M. N. Prabhakar, and J. Song, “Effect of interface in hybrid reinforcement of flax/glass on mechanical properties of vinyl ester composites,” Polymer Testing, vol. 73, pp. 404–411, Feb. 2019.
[10] M. H. Zin, K. Abdan, and M. N. Norizan, “The effect of different fiber loading on flexural and thermal properties of banana/pineapple leaf (PALF)/glass hybrid composite,” in Structural Health Monitoring of Biocomposites, Fibre- Reinforced Composites and Hybrid Composites. Amsterdam, Netherlands: Elsevier, 2019, pp. 1–17.
[11] A. Alavudeen, N. Rajini, S. Karthikeyan, M. Thiruchitrambalam, and N. Venkateshwaren, “Mechanical properties of banana/kenaf fiberreinforced hybrid polyester composites: Effect of woven fabric and random orientation,” Materials and Design, vol. 66, pp. 246–257, Feb. 2015.
[12] S. Krishnasamy, S. M. K. Thiagamani, C. Muthukumar, J. Tengsuthiwat, R. Nagarajan, S. Siengchin, and S. O. Ismail, “Effects of stacking sequences on static, dynamic mechanical and thermal properties of completely biodegradable green epoxy hybrid composites,” Materials Research Express, vol. 6, no. 10, Sep. 2019.
[13] M. Jawaid and H. P. S. A. Khalil, “Cellulosic/ synthetic fibre reinforced polymer hybrid composites: A review,” Carbohydrate Polymers, vol. 86, pp. 1–18, Aug. 2011.
[14] M. Ramesh, K. Palanikumar, and K. H. Reddy, “Plant fibre based bio-composites: Sustainable and renewable green materials,” Renewable and Sustainable Energy Reviews, vol. 79, pp. 558–584, Nov. 2017.
[15] J. J. Sokołowska, “Technological properties of polymer concrete containing vinyl-ester resin waste mineral powder,” Journal of Building Chemistry, vol. 1, pp. 84–91, Dec. 2016.
[16] K. Senthilkumar, T. Ungtrakul, M. Chandrasekar, T. S. M. Kumar, N. Rajini, S. Siengchin, H. Pulikkalparambil, J. Parameswaranpillai, and N. Ayrilmis, “Performance of sisal/hemp bio-based epoxy composites under accelerated weathering”, Journal of Polymers and the Environment, vol. 29, pp. 624–636, Oct. 2021.
[17] M. Chandrasekar, R. M. Shahroze, M. R. Ishak, N. Saba, M. Jawaid, K. Senthilkumar, T. S. M. Kumar, and S. Siengchin, “Flax and sugar palm reinforced epoxy composites: Effect of hybridization on physical, mechanical, morphological and dynamic mechanical properties,” Materials Research Express, vol. 6, no. 10, Aug. 2019, Art. no. 105331.
[18] M. Ramesh, “Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: A review on processing and properties,” Progress in Material Science, vol. 78–79, pp. 1–92, Jun. 2016.
[19] M. Idicula, K. Joseph, and S. Thomas, “Mechanical performance of short banana/sisal hybrid fiber reinforced polyester composites,” Journal of Reinforced Plastics and Composites, vol. 29, pp. 12–29, Apr. 2009.
[20] S. C. Amico, C. C. Angrizani, and M. L. Drummond, “Influence of the stacking sequence on the mechanical properties of glass/sisal hybrid composites,” Journal of Reinforced Plastics and Composites, vol. 29, pp. 179–189, Nov. 2008.
[21] S. M. K. Thiagamani, S. Krishnasamy, C. Muthukumar, J. Tengsuthiwat, R. Nagarajan, S. Siengchin, and S. O. Ismail, “Investigation into mechanical, absorption and swelling behaviour of hemp/sisal fibre reinforced bioepoxy hybrid composites: Effects of stacking sequences,” International Journal of Biological Macromolecules, vol. 140, pp. 637–646, Nov. 2019.
[22] M. Jawaid, H. P. S. A. Khalil, P. N. Khanam, and A. A. Bakar, “Hybrid composites made from oil palm empty fruit bunches/jute fibres: Water absorption, thickness swelling and density behaviours,” Journal of Polymers and the Environment, vol. 19, pp. 106–109, May 2010.
[23] Z. Leman, S. M. Sapuan, A. M. Saifol, M. A. Maleque, and M. M. H. M. Ahmad, “Moisture absorption behavior of sugar palm fiber reinforced epoxy composites,” Materials and Design, vol. 29, pp. 1666–1670, Dec. 2007.
[24] S. Krishnasamy, C. Muthukumar, R. Nagarajan, S. M. K. Thiagamani, N. Saba, M. Jawaid, S. Siengchin, and N. Ayrilmis, “Effect of fibre loading and Ca(OH)2 treatment on thermal, mechanical, and physical properties of pineapple leaf fibre/polyester reinforced composites,” Materials Research Express, vol. 6, Jun. 2009.
[25] M. Chandrasekar, M. R. Ishak, S. M. Sapuan, Z. Leman, and M. Jawaid, “A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption,” Plastics, Rubber and Composites, vol. 46, pp. 119–136, Mar. 2017.