Natural Fiber-based Green Composites: Processing, Properties and Biomedical Applications

Main Article Content

Md Enamul Hoque
Asif Mahmud Rayhan
Samira Islam Shaily

Abstract

Since the advent of modern technological civilization, tremendous pollution has been emerged in our environment by disposing of waste material in the environment unconsciously. Some waste materials are biodegradable and some of them are non-biodegradable. Biodegradable waste, originated from plants or animals, can be decomposed by the natural organism (bacteria, fungi, etc.) and can be excluded from pollution. This degradation process may be rapid or slow but the environmental risks are low. On the other hand, non-biodegradable waste, obtained from inorganic components cannot be decomposed by the natural organism and act as a source of pollution. These wastes are being generated by humans, and every year billions tons of wastes are being dumped into the environment which puts our environment in danger. As a result, environmental consciousness has increased worldwide. This growing ecological and environmental awareness leads the world to develop eco-friendly materials. As the population grows day by day, it is not possible to reduce waste. So, it is wise to focus on developing new materials that would produce biodegradable waste. Recently, the attraction on the biocomposite (known as green composites) materials has significantly increased because it is generated from natural fiber which is biodegradable and it has the potential of being a substitute for conventional non-biodegradable products. Biocomposites are used in various industrial sectors, including the bio-medical industry. In this paper, the overall idea of natural fibers, extraction and surface modification methods of natural fiber, natural fiber-based biocomposites, fabrication and properties analysis of biocomposite, and recent applications of biocomposites in the medical sector have been reviewed. The primary incentive for developing and using biocomposite is to build a new generation of eco-friendly materials by replacing synthetic ones.

Article Details

How to Cite
Hoque, M. E., Rayhan, A. M., & Shaily, S. I. (2021). Natural Fiber-based Green Composites: Processing, Properties and Biomedical Applications. Applied Science and Engineering Progress, 14(4), 689–718. https://doi.org/10.14416/j.asep.2021.09.005
Section
Research Articles

References

[1] S. Ouajai and R. A. Shanks, “Preparation, structure and mechanical properties of all-hemp cellulose biocomposites,” Composites Science and Technology, vol. 69, no. 13, pp. 2119–2126, Oct. 2009, doi: 10.1016/j.compscitech.2009.05.005.

[2] B. D. Ratner, “Biomaterials science: An interdisciplinary endeavor,” in Biomaterials Science. San Diego: Academic Press, 1996, pp. 1–8.

[3] R. Li, T. Zeng, M. Wu, H. Zhang, and X. Hu, “Effects of esterification on the structural, physicochemical, and flocculation properties of dextran,” Carbohydrate Polymers, vol. 174, pp. 1129–1137, Oct. 2017, doi: 10.1016/j.carbpol. 2017.07.034.

[4] T. G. Volova, A. A. Shumilova, I. P. Shidlovskiy, E. D. Nikolaeva, A. G. Sukovatiy, A. D. Vasiliev, and E. I. Shishatskaya, “Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics,” Polymer Testing, vol. 65, pp. 54–68, Feb. 2018, doi: 10.1016/j. polymertesting.2017.10.023.
[5] K. Albert, X.-C. Huang, and H.-Y. Hsu, “Biotemplated silica composites for next-generation biomedical applications,” Advances in Colloid and Interface Science, vol. 249, pp. 272–289, Nov. 2017, doi: 10.1016/j.cis.2017.04.011.

[6] G. S. Mann, L. P. Singh, and P. Kumar, “A peer review of the processing technologies and applications of green composites in a biomedical area,” International Journal of Technical Research & Science, vol. 4, no. 6, pp. 13–19, Jun. 2019, doi: 10.30780/IJTRS.V04.I06.002.

[7] WHO, “Health-care waste,” 2021. [Online]. Available: https://www.who.int/news-room/factsheets/ detail/health-care-waste

[8] Nation Geographic, “Can medical care exist without plastic?,” 2021. [Online]. Available: https:// www.nationalgeographic.com/science/article/ can-medical-care-exist-without-plastic

[9] R. Song, M. Murphy, C. Li, K. Ting, C. Soo, and Z. Zheng, “Current development of biodegradable polymeric materials for biomedical applications,” Drug Design Development and Therapy, vol. 12, pp. 3117–3145, Sep. 2018, doi: 10.2147/DDDT. S165440.

[10] L. Mohammed, M. N. M. Ansari, G. Pua, M. Jawaid, and M. S. Islam, “A review on natural fiber reinforced polymer composite and its applications,” International Journal of Polymer Science, vol. 2015, p. e243947, Oct. 2015, doi: 10.1155/2015/243947.

[11] S. K. Ramamoorthy, M. Skrifvars, and A. Persson, “A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers,” Polymer Reviews, vol. 55, no. 1, pp. 107–162, Jan. 2015, doi: 10.1080/15583724.2014.971124.

[12] M. E. Hoque, A. M. Khan, M. S. Islam, M. Asim, M. Jawaid, and O. A. Othman, “The effect of naturaldegradation on the mechanical and morphological properties of tropical woods,” Cellulose Chemistry and Technology, vol. 50, no. 7–8, pp. 723–730, 2016.

[13] E. M. Taiwo, K. Yahya, and Z. Haron, “Potential of using natural fiber for building acoustic absorber: A review,” Journal of Physics: Conference Series, vol. 1262, p. 012017, Aug. 2019, doi: 10.1088/1742-6596/1262/1/012017.

[14] Eduladder, “Difference between natural and synthetic fibres Science Ncert class 6,” 2021. [Online]. Available: https://eduladder.com/ viewquestions/10886/Difference-between-naturaland- synthetic-fibres---Science-Ncert-class-6

[15] P. Wambua, J. Ivens, and I. Verpoest, “Natural fibres: Can they replace glass in fibre reinforced plastics?,” Composites Science and Technology, vol. 63, no. 9, pp. 1259–1264, Jul. 2003, doi: 10.1016/S0266-3538(03)00096-4.

[16] S. M. Rangappa, S. Siengchin, and H. N. Dhakal, “Green-composites: Ecofriendly and sustainability,” Applied Science and Engineering Progress, vol. 13, no. 3, 2020, doi: 10.14416/jasep. 2020.06.001.

[17] T. Townsend, “1B - World natural fibre production and employment,” in Handbook of Natural Fibres. 2nd ed., Cambridge, UK: Woodhead Publishing, 2020, pp. 15–36.

[18] R. Luppino, “2020 Preferred Fiber and Materials Market Report (PFMR) Released!,” 2021. [Online]. Available: https://textileexchange. org/2020-preferred-fiber-and-materials-marketreport- pfmr-released/

[19] A. W. Engelhardt, “The Fiber Year 2020 – Deceleration along the textile chain,” 2020. [Online]. Available: https://fiberjournal.com/ the-fiber-year-2020-deceleration-along-thetextile- chain/

[20] A. Vinod, M. R. Sanjay, S. Suchart, and P. Jyotishkumar, “Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites,” Journal of Cleaner Production, vol. 258, p. 120978, Jun. 2020, doi: 10.1016/j.jclepro. 2020.120978.

[21] S. A. N. Mohamed, E. S. Zainudin, S. M. Sapuan, M. D. Azaman, and A. M. T. Arifin, “1 - Introduction to natural fiber reinforced vinyl ester and vinyl polymer composites,” in Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites. Cambridge, UK: Woodhead Publishing, 2018, pp. 1–25. doi: 10.1016/B978-0-08-102160- 6.00001-9.

[22] LinenMe News, “Everything You Need to Know About Dew Retting Linen,” 2020. [Online]. Available: https://www.linenme.com/news/ everything-need-know-dew-retting-linen/

[23] L. Sisti, G. Totaro, M. Vannini, and A. Celli, “Retting process as a pretreatment of natural fibers for the development of polymer composites,” in Lignocellulosic Composite Materials. New York: Springer International Publishing, 2018, pp. 97–135.
[24] C. Ngaowthong, M. Borůvka, L. Běhálek, P. Lenfeld, M. Švec, R. Dangtungee, S. Siengchin, S. M. Rangappa, and J. Parameswaranpillai, “Recycling of sisal fiber reinforced polypropylene and polylactic acid composites: Thermomechanical properties, morphology, and water absorption behavior,” Waste Management, vol. 97, pp. 71–81, Sep. 2019, doi: 10.1016/j.wasman. 2019.07.038.

[25] B. Aaliya, K. V. Sunooj, and M. Lackner, “Biopolymer composites: A review,” International Journal of Biobased Plastics, vol. 3, no. 1, pp. 40–84, Jan. 2021, doi: 10.1080/ 24759651.2021.1881214.
[26] V. Sadrmanesh, Y. Chen, M. Rahman, and F. M. AL-Oqla, “Developing a decision making model to identify the most influential parameters affecting mechanical extraction of bast fibers,” Journal of Cleaner Production, vol. 238, p. 117891, Nov. 2019, doi: 10.1016/j.jclepro.2019.117891.

[27] J. Patel and P. H. Parsania, “Characterization, testing, and reinforcing materials of biodegradable composites,” in Biodegradable and Biocompatible Polymer Composites. Cambridge, UK: Woodhead Publishing, 2018.

[28] A. Oushabi, S. Sair, F. O. Hassani, Y. Abboud, O. Tanane, and A. E. Bouari, “The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPFePolyurethane composite,” South African Journal of Chemical Engineering (SAJCE), vol. 23, no. 1, pp. 116– 123, Jan. 2017, doi: 10.1016/j.sajce.2017.04.005.

[29] Y. N. Solier, P. Mocchiutti, M. N. Cabrera, M. C. N. Saparrat, M. Á. Zanuttini, and M. C. Inalbon, “Alkali-peroxide treatment of sugar cane bagasse. Effect of chemical charges on the efficiency of xylan isolation and susceptibility of bagasse to saccharification,” Biomass Conversion and Biorefinery, May 2020, doi: 10.1007/s13399- 020-00776-0.

[30] A. A. Kafi, K. Magniez, and B. L. Fox, “A surfaceproperty relationship of atmospheric plasma treated jute composites,” Composites Science and Technology, vol. 71, no. 15, pp. 1692–1698, Oct. 2011, doi: 10.1016/j.compscitech.2011.07.011.

[31] A. Stamboulis, C. A. Baillie, S. K. Garkhail, H. G. H. van Melick, and T. Peijs, “Environmental durability of flax fibres and their composites based on polypropylene matrix,” Applied Composite Materials, vol. 7, no. 5, pp. 273–294, Nov. 2000, doi: 10.1023/A:1026581922221.

[32] A. B. Thomsen, A. Thygesen, V. Bohn, K. V. Nielsen, B. Pallesen, and M. S. Jørgensen, “Effects of chemical–physical pre-treatment processes on hemp fibres for reinforcement of composites and for textiles,” Industrial Crops and Products, vol. 24, no. 2, pp. 113–118, Sep. 2006, doi: 10.1016/j.indcrop.2005.10.003.

[33] R. Kozlowski, W. Koncewicz, J. Wojtysiak, and W. Podsiedlik, “Device for processing fibrous raw materials and the method of fibrous plants processing,” 2013. [Online]. Available: https:// patents.google.com/patent/EP2242876B1/ar

[34] W. Różańska and J. Wojtysiak, “The effect of physical factors on the process of physicalmechanical degumming of flax fibers,” Textile Research Journal, vol. 85, pp. 391–403, Jan. 2014, doi: 10.1177/0040517514547214.

[35] R. M. Tajuddin and S. Aisyah, “Trends in natural fibre production and its future,” in 5th Brunei International Conference on Engineering and Technology (BICET 2014), Jan. 2014, doi: 10.1049/cp.2014.1080.
[36] P. M. Tahir, A. Ahmed, S. SaifulAzry, and Z. Ahmed, “Retting process of some bast plant fibres and its effect on fibre quality: A review,” BioResources, vol. 6, pp. 5260–5281, Nov. 2011.

[37] J. Foulk, D. Akin, R. Dodd, and D. Mcalister, “USDA Flax Fiber Pilot Plant,” in 60th Flax Institute Proceedings, Mar. 2004, pp. 1–12.

[38] M. Rahman, F. Zahin, M. A. S. R. Saadi, A. Sharif, and M. E. Hoque, “Surface modification of advanced and polymer nanocomposites,” in Environmental Nanotechnology. New York: Springer International Publishing, 2018, pp. 187–209.

[39] K. F. Adekunle, “Surface treatments of natural fibres—A review: Part 1,” Open Journal of Polymer Chemistry, vol. 5, no. 3, 2015, doi: 10.4236/ ojpchem.2015.53005.

[40] K. G. Satyanarayana, G. G. C. Arizaga, and F. Wypych, “Biodegradable composites based on lignocellulosic fibers—An overview,” Progress in Polymer Science, vol. 34, no. 9, pp. 982– 1021, Sep. 2009, doi: 10.1016/j.progpolymsci. 2008.12.002.

[41] N. Bahramian, M. Atai, and M. R. Naimi-Jamal, “Ultra-high-molecular-weight polyethylene fiber reinforced dental composites: Effect of fiber surface treatment on mechanical properties of the composites,” Dental Materials, vol. 31, no. 9, Sep. 2015, doi: 10.1016/j.dental.2015.05.011.

[42] J. Peran and S. Ražić, “Application of atmospheric pressure plasma technology for textile surface modification,” Textile Research Journal, vol. 90, p. 004051751988395, Oct. 2019, doi: 10.1177/ 0040517519883954.

[43] D. P. Ferreira, J. Cruz, and R. Fangueiro, “Chapter 1 - Surface modification of natural fibers in polymer composites,” in Green Composites for Automotive Applications. Cambridge, UK: Woodhead Publishing, 2019, pp. 3–41.

[44] A. Valadez-Gonzalez, J. M. Cervantes-Uc, R. Olayo, and P. J. Herrera-Franco, “Chemical modification of henequén fibers with an organosilane coupling agent,” Composites Part B: Engineering, vol. 30, no. 3, pp. 321–331, Apr. 1999, doi: 10.1016/ S1359-8368(98)00055-9.

[45] S. M. Rangappa, S. Siengchin, J. Parameswaranpillai, M. Jawaid, C. I. Pruncu, and A. Khan, “A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization,” Carbohydrate Polymers, vol. 207, pp. 108–121, Mar. 2019, doi: 10.1016/j.carbpol.2018.11.083.

[46] M. Ravi, R. R. Dubey, A. Shome, S. Guha, and C. A. Kumar, “Effect of surface treatment on Natural fibers composite,” IOP Conference Series: Materials Science and Engineering, vol. 376, p. 012053, Jun. 2018, doi: 10.1088/1757- 899X/376/1/012053.

[47] M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, “Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview,” Composites Part B: Engineering, vol. 43, no. 7, pp. 2883–2892, Oct. 2012, doi: 10.1016/j. compositesb.2012.04.053.

[48] P. Senthamaraikannan, S. S. Saravanakumar, M. R. Sanjay, M. Jawaid, and S. Siengchin, “Physico-chemical and thermal properties of untreated and treated Acacia planifrons bark fibers for composite reinforcement,” Materials Letters, vol. 240, pp. 221–224, Apr. 2019, doi: 10.1016/j.matlet.2019.01.024.

[49] J. Cruz and R. Fangueiro, “Surface Modification of Natural Fibers: A Review,” Procedia Engineering, vol. 155, pp. 285–288, Jan. 2016, doi: 10.1016/j. proeng.2016.08.030.

[50] M. P. Gashti, A. Pournaserani, H. Ehsani, and M. P. Gashti, “Surface oxidation of cellulose by ozone-gas in a vacuum cylinder to improve the functionality of fluoromonomer,” Vacuum, vol. 91, pp. 7–13, May 2013, doi: 10.1016/j. vacuum.2012.10.015.

[51] G. W. Beckermann and K. L. Pickering, “Engineering and evaluation of hemp fibre reinforced polypropylene composites: Fibre treatment and matrix modification,” Composites Part A: Applied Science and Manufacturing, vol. 39, no. 6, pp. 979–988, Jun. 2008, doi: 10.1016/j. compositesa.2008.03.010.

[52] D.-W. Gao, Q. Hu, H. Pan, J. Jiang, and P. Wang, “High-capacity adsorption of aniline using surface modification of lignocellulose biomass jute fibers,” Bioresource Technology, vol. 193, pp. 507–512, Oct. 2015, doi: 10.1016/j. biortech.2015.06.138.

[53] T. Lu, M. Jiang, Z. Jiang, D. Hui, Z. Wang, and Z. Zhou, “Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites,” Composites Part B: Engineering, vol. 51, pp. 28–34, Aug. 2013, doi: 10.1016/j.compositesb.2013.02.031.

[54] Z. Lu, J. Xiao, Y. Wang, and M. Meng, “In situ synthesis of silver nanoparticles uniformly distributed on polydopamine-coated silk fibers for antibacterial application,” Journal of Colloid and Interface Science, vol. 452, pp. 8–14, Aug. 2015, doi: 10.1016/j.jcis.2015.04.015.

[55] M. P. Gashti and A. Almasian, “Citric acid/ ZrO2 nanocomposite inducing thermal barrier and self-cleaning properties on protein fibers,” Composites Part B: Engineering, vol. 52, pp. 340–349, Sep. 2013, doi: 10.1016/j. compositesb.2013.04.037.

[56] M. Jawaid and S. Siengchin, “Hybrid composites: A versatile materials for future,” Applied Science and Engineering Progress, vol. 12, no. 4, 2019, doi: 10.14416/j.asep.2019.09.002.

[57] R. J. Palmer and W. E. Moore, “Resin impregnation process for producing a resin-fiber composite,” U.S. 5281388A, Jan. 25, 1994.

[58] M. Ashby and K. Johnson, Materials and Design: The Art and Science of Material Selection in Product Design. 3rd ed., Oxford, England: Butterworth-Heinemann, Jan. 2014.

[59] F. Dweiri and F. M. Al-Oqla, “Material selection using analytical hierarchy process,” International Journal of Computer Applications in Technology, vol. 26, no. 4, pp. 182–189, Jan. 2006, doi: 10.1504/ IJCAT.2006.010763.

[60] S. Mazumdar, Composites Manufacturing: Materials, Product, and Process Engineering. Florida: CRC Press, 2001.

[61] D. S. Cairns and J. D. Shramstad, “Evaluation of Hand Lay-Up and Resin Transfer Molding in Composite Wind Turbine Blade Manufacturing,” U.S. Department of Energy, Tennessee, USA, Jun. 2000.

[62] S. Udupi and L. Rodrigues, “Detecting safety zone drill process parameters for uncoated HSS Twist Drill in machining GFRP composites by integrating wear rate and wear transition mapping,” Indian Journal of Materials Science, vol. 2016, pp. 1–8, Jul. 2016, doi: 10.1155/ 2016/9380583.

[63] A. Fairuz, S. Sapuan, E. S. Zainudin, and C. Jaafar, “Polymer composite manufacturing using a pultrusion process: A review,” American Journal of Applied Sciences, vol. 11, pp. 1798–1810, Oct. 2014, doi: 10.3844/ajassp.2014.1798.1810.

[64] J. K. Kim and K. Pal, Recent Advances in the Processing of Wood-Plastic Composites. Berlin, Germany: Springer Science & Business Media, 2010.

[65] M. R. Ketabchi, M. E. Hoque, and M. Khalid Siddiqui, “Critical concerns on manufacturing processes of natural fibre reinforced polymer composites,” in Manufacturing of Natural Fibre Reinforced Polymer Composites. Berlin, Germany: Springer International Publishing, 2015, pp. 125–138.
[66] M. Arifur Rahman, F. Parvin, M. Hasan, and M. E. Hoque, “Introduction to manufacturing of natural fibre-reinforced polymer composites,” in Manufacturing of Natural Fibre Reinforced Polymer Composites. Berlin, Germany: Springer International Publishing, 2015, pp. 17–43.

[67] F. M. AL-Oqla, A. Almagableh, and M. A. Omari, “Design and fabrication of green biocomposites,” in Green Biocomposites: Design and Applications. Berlin, Germany: Springer International Publishing, 2017, pp. 45–67.

[68] I. Oliveira, S. Amico, J. Avila Souza, and A. Lima, “Resin transfer molding process: A numerical and experimental investigation,” International Journal of Multiphysics, vol. 7, pp. 125–136, Jun. 2013, doi: 10.1260/1750-9548.7.2.125.

[69] A. Lotfi, H. Li, D. V. Dao, and G. Prusty, “Natural fiber–reinforced composites: A review on material, manufacturing, and machinability,” Journal of Thermoplastic Composite Materials (JTCM), vol. 34, p. 089270571984454, Apr. 2019, doi: 10.1177/0892705719844546.

[70] A. J. Kauffman, R. S. Black, and A. J. Stanley, “Apparatus for injection molding fiber-reinforced thermoset plastic articles,” U.S. 4752201A, Jun. 21, 1988.

[71] Fractory, “Mechanical properties of materials,” 2019. [Online]. Available: https://fractory.com/ mechanical-properties-of-materials/

[72] Ş. Yildizhan, A. Çalik, M. Özcanli, and H. Seri̇n, “Bio-composite materials: A short review of recent trends, mechanical and chemical properties, and applications,” European Mechanical Science (EMS), vol. 2, no. 3, Sep. 2018, doi: 10.26701/ems.369005.

[73] H. Cheung, M. Ho, K. Lau, F. Cardona, and D. Hui, “Natural fibre-reinforced composites for bioengineering and environmental engineering applications,” Composites Part B: Engineering, vol. 40, no. 7, pp. 655–663, Oct. 2009, doi: 10.1016/j.compositesb.2009.04.014.

[74] T. Gurunathan, S. Mohanty, and S. K. Nayak, “A review of the recent developments in biocomposites based on natural fibres and their application perspectives,” Composites Part A: Applied Science and Manufacturing, vol. 77, pp. 1–25, Oct. 2015, doi: 10.1016/j.compositesa. 2015.06.007.

[75] A. I. Al-Mosawi, M. H. Al-Maamori, and Z. A. Wetwet, “Mechanical properties of composite material reinforcing by natural-synthetic fibers,” vol. 3, no. 3, p. 6, 2012.

[76] BYJUS, “Thermal properties of materials - Physical properties of materials,” 2021. [Online]. Available: https://byjus.com/physics/thermalproperties- of-materials/

[77] M. Asim, M. T. Paridah, M. Chandrasekar, R. M. Shahroze, M. Jawaid, M. Nasir, and R. Siakeng, “Thermal stability of natural fibers and their polymer composites,” Iranian Polymer Journal, vol. 29, no. 7, pp. 625–648, Jul. 2020, doi: 10.1007/s13726-020-00824-6.

[78] N. Zulkarnain and B. Yousif, “Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation,” Polymer Degradation and Stability, vol. 98, pp. 2752–2759, Dec. 2013, doi: 10.1016/j.polymdegradstab.2013.10.008.

[79] M. Karkri, “4 - Thermal conductivity of biocomposite materials,” in Biopolymer Composites in Electronics. Amsterdam, Netherlands: Elsevier, 2017, pp. 129–153. doi: 10.1016/B978-0-12-809261-3.00004-8.
[80] M. Aadmi, K. Mustapha, L. Ibos, and M. Hammouti, “Effective thermal conductivity of random twophase composites,” Journal of Reinforced Plastics and Composites (JRP), vol. 33, Sep. 2013, doi: 10.1177/0731684413504018.

[81] Y. Agari and T. Uno, “Estimation on thermal conductivities of filled polymers,” Journal of Applied Polymer Science, vol. 32, no. 7, pp. 5705– 5712, 1986, doi: https://doi.org/10.1002/ app.1986.070320702.

[82] F. Danes, B. Garnier, and T. Dupuis, “Predicting, measuring, and tailoring the transverse thermal conductivity of composites from polymer matrix and metal filler,” International Journal of Thermophysics, vol. 24, no. 3, pp. 771–784, May 2003, doi: 10.1023/A:1024096401779.

[83] F. Danès, B. Garnier, T. Dupuis, P. Lerendu, and T.-P. Nguyen, “Non-uniformity of the filler concentration and of the transverse thermal and electrical conductivities of filled polymer plates,” Composites Science and Technology, vol. 6, no. 65, pp. 945–951, 2005, doi: 10.1016/j.compscitech. 2004.10.017.

[84] ProQuest, “Development and modeling of thermally conductive polymer /carbon composites,” 2021. [Online]. Available: https://search.proquest.com/ openview/fd69358fe7035a5c7028249945cafe4 a/1?pq-origsite=gscholar&cbl=18750&diss=y

[85] J. M. Keith, C. D. Hingst, M. G. Miller, J. A. King, and R. A. Hauser, “Measuring and predicting in-plane thermal conductivity of carbon-filled nylon 6,6 polymer composites,” Polymer Composites, vol. 27, no. 1, pp. 1–7, 2006, doi: https://doi. org/10.1002/pc.20160.

[86] S. Sadat, A. Mokaddem, B. Doumi, M. Berber, and A. Boutaous, “Investigation of the effect of thermal stress on the interface damage of hybrid biocomposite materials,” Mechanics and Mechanical Engineering, vol. 23, no. 1, pp. 253– 258, Jul. 2019, doi: 10.2478/mme-2019-0034.

[87] M. P. M. Dicker, P. F. Duckworth, A. B. Baker, G. Francois, M. K. Hazzard, and P. M. Weaver, “Green composites: A review of material attributes and complementary applications,” Composites Part A: Applied Science and Manufacturing, vol. 56, pp. 280–289, Jan. 2014, doi: 10.1016/j.compositesa.2013.10.014.

[88] M. A. Fuqua, S. Huo, and C. A. Ulven, “Natural fiber reinforced composites,” Polymer Reviews, vol. 52, no. 3, pp. 259–320, Jul. 2012, doi: 10.1080/15583724.2012.705409.

[89] X. Li, L. G. Tabil, and S. Panigrahi, “Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review,” Journal of Polymers and the Environment, vol. 15, no. 1, pp. 25–33, Jan. 2007, doi: 10.1007/s10924-006- 0042-3.

[90] O. Faruk, A. K. Bledzki, H.-P. Fink, and M. Sain, “Biocomposites reinforced with natural fibers: 2000–2010,” Progress in Polymer Science, vol. 37, no. 11, Nov. 2012, doi: 10.1016/j.progpolymsci. 2012.04.003.
[91] M. Jawaid and H. P. S. A. Khalil, “Cellulosic/ synthetic fibre reinforced polymer hybrid composites: A review,” Carbohydrate Polymers, vol. 86, no. 1, pp. 1–18, Aug. 2011, doi: 10.1016/j.carbpol. 2011.04.043.
[92] E. Bari, J. Morrell, and A. Sistani, “Durability of natural/synthetic/biomass fiber-based polymeric composites: laboratory and field tests,” Composites Science and Engineering, pp. 15–26., 2019, doi: 10.1016/B978-0-08-102290-0.00002-7.

[93] V. A. Alvarez, R. A. Ruseckaite, and A. Vázquez, “Degradation of sisal fibre/Mater Bi-Y biocomposites buried in soil,” Polymer Degradation and Stability, vol. 91, no. 12, pp. 3156–3162.

[94] M. Enamul Hoque, M. A. M. Aminudin, M. Jawaid, M. S. Islam, N. Saba, and M. T. Paridah, “Physical, mechanical, and biodegradable properties of meranti wood polymer composites,” Materials & Design, vol. 64, pp. 743–749, Dec. 2014, doi: 10.1016/j.matdes.2014.08.024.

[95] D. R, S. N, Zulnazri, and R. M, “Mechanical and biodegradability properties of bio composite from Sago starch and straw filler,” Eurasian Journal of Analytical Chemistry, vol. 13, no. 6, pp. 244–248, Dec. 2018.

[96] H. M. H. P. Company, “The american heritage dictionary entry,” 2021. [Online]. Available: https://www.ahdictionary.com/

[97] B. Ben-Nissan, “Natural bioceramics: From coral to bone and beyond,” Current Opinion in Solid State & Materials Science, vol. 7, no. 4, Art. no. 4, Aug. 2003, doi: 10.1016/j.cossms.2003.10.001.

[98] S. A. Clarke and P. Walsh, “12 - Marine organisms for bone repair and regeneration,” in Bone Substitute Biomaterials. Cambridge, UK: Woodhead Publishing, 2014, pp. 294–318. doi: 10.1533/9780857099037.3.294.

[99] M. L. Hans and A. M. Lowman, “Biodegradable nanoparticles for drug delivery and targeting,” Current Opinion in Solid State & Materials Science, vol. 6, no. 4, Aug. 2002, doi: 10.1016/S1359- 0286(02)00117-1.

[100] X.-J. Ji, L. Gao, J. Liu, R. Jiang, F. Sun, L.-Y. Cui, S.-Q. Li, K. Zhi, R. Zeng, and Z.-L. Wang, “Corrosion resistance and antibacterial activity of hydroxyapatite coating induced by ciprofloxacinloaded polymeric multilayers on magnesium alloy,” Progress in Organic Coatings, vol. 135, pp. 465–474, Oct. 2019, doi: 10.1016/j.porgcoat. 2019.06.048.

[101] K. Y. Lee and S. H. Yuk, “Polymeric protein delivery systems,” Progress in Polymer Science, vol. 32, no. 7, Jul. 2007, doi: 10.1016/j.progpolymsci. 2007.04.001.

[102] J. A. Lett, S. Sagadevan, I. Fatimah, M. E. Hoque, Y. Lokanathan, E. Léonard, S. F. Alshahateet, R. Schirhagl, and W. C. Oh, “Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications,” European Polymer Journal, vol. 148, p. 110360, Apr. 2021, doi: 10.1016/j.eurpolymj.2021.110360.

[103] S. M. K. Thiagamani, S. Krishnasamy, and S. Siengchin, “Challenges of biodegradable polymers: An environmental perspective,” Applied Science and Engineering Progress, Mar. 2019, doi: 10.14416/j.asep.2019.03.002.

[104] O. Karadas, D. Yucel, H. Kenar, G. Kose, and V. Hasirci, “Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton’s jelly and menstrual blood stem cells,” Journal of Tissue Engineering and Regenerative Medicine, vol. 8, Jun. 2012, doi: 10.1002/term.1555.
[105] E. Kijeńska, M. P. Prabhakaran, W. Swieszkowski, K. J. Kurzydlowski, and S. Ramakrishna, “Electrospun bio-composite P(LLA-CL)/ collagen I/collagen III scaffolds for nerve tissue engineering,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 100B, no. 4, 2012, doi: 10.1002/jbm.b.32676.

[106] Y.-C. Lin, F. Tan, K. G. Marra, S.-S. Jan, and D.-C. Liu, “Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications,” Acta Biomaterialia, vol. 5, no. 7, Sep. 2009, doi: 10.1016/j.actbio.2009.03.038.

[107] L. Pastorino, E. Dellacasa, S. Scaglione, M. Giulianelli, F. Sbrana, M. Vassalli, and C. Ruggiero, “Oriented collagen nanocoatings for tissue engineering,” Colloids Surfaces B: Biointerfaces, vol. 114, pp. 372–378, Feb. 2014, doi: 10.1016/j. colsurfb.2013.10.026.

[108] M. Prabhakaran, E. Vatankhah, and S. Ramakrishna, “Electrospun aligned PHBV/collagen nanofibers as substrates for nerve TE,” Biotechnology and Bioengineering, vol. 110, Oct. 2013, doi: 10.1002/bit.24937.

[109] A. Sionkowska and J. Kozłowska, “Characterization of collagen/hydroxyapatite composite sponges as a potential bone substitute,” International Journal of Biological Macromolecules, vol. 47, no. 4, Nov. 2010, doi: 10.1016/j.ijbiomac. 2010.07.002.

[110] K. Wei, Y. Li, X. Lei, H. Yang, A. Teramoto, J. Yao, K. Abe, and F. K. Ko, “Emulsion electrospinning of a collagen-like protein/ PLGA fibrous scaffold: Empirical modeling and preliminary release assessment of encapsulated protein,” Macromolecular Bioscience, vol. 11, no. 11, 2011, doi: 10.1002/mabi.201100141.
[111] M. Maas P. Guo, M. Keeney, F. Yang, T. M. Hsu, G. G. Fuller, C. R. Martin, and R. N. Zare, “Preparation of mineralized nanofibers: Collagen fibrils containing calcium phosphate,” Nano Letters, vol. 11, pp. 1383–1388, Mar. 2011, doi: 10.1021/nl200116d.

[112] R.-N. Chen, H.-O. Ho, and M.-T. Sheu, “Characterization of collagen matrices crosslinked using microbial transglutaminase,” Biomaterials, vol. 26, no. 20, Jul. 2005, doi: 10.1016/j.biomaterials.2004.11.012.

[113] J. W. Drexler and H. M. Powell, “Regulation of electrospun scaffold stiffness via coaxial core diameter,” Acta biomaterialia, vol. 7, no. 3, Mar. 2011, doi: 10.1016/j.actbio.2010.10.025.

[114] M. Shakir, R. Jolly, M. S. Khan, N. e Iram, and H. M. Khan, “Nano-hydroxyapatite/chitosan– starch nanocomposite as a novel bone construct: Synthesis and in vitro studies,” International Journal of Biological Macromolecules, vol. 80, pp. 282–292, Sep. 2015, doi: 10.1016/j.ijbiomac. 2015.05.009.

[115] C. M. Tierney, M. G. Haugh, J. Liedl, F. Mulcahy, B. Hayes, and F. J. O’Brien, “The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 2, no. 2, Apr. 2009, doi: 10.1016/j.jmbbm.2008.08.007.

[116] T. Kokubo and H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?,” Biomaterials, vol. 27, no. 15, May 2006, doi: 10.1016/j.biomaterials.2006.01.017.

[117] L. Kong, Y. Gao, G. Lu, Y. Gong, N. Zhao, and X. Zhang, “A study on the bioactivity of chitosan/ nano-hydroxyapatite composite scaffolds for bone tissue engineering,” European Polymer Journal, vol. 42, no. 12, Dec. 2006, doi: 10.1016/j.eurpolymj.2006.08.009.

[118] M. E. Hoque, T. Nuge, T. K. Yeow, and N. Nordin, “Gelatin based scaffolds for tissue engineering – A review,” Polymer Research Journal, vol. 9, no. 1, p. 19, 2015.
[119] S. V. Vlierberghe, P. Dubruel, and E. Schacht, “Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review,” Biomacromolecules, vol. 12, no. 5, pp. 1387– 1408, May 2011, doi: 10.1021/bm200083n.

[120] S. Bozzini, P. Petrini, L. Altomare, and M. Tanzi, “Fabrication of chemically cross-linked porous gelatin matrices,” Journal of Applied Biomaterials Biomechanics (JABB), vol. 7, pp. 194–199, Sep. 2009.
[121] P. Dubruel R. Unger, S. V. Vlierberghe, V. Cnudde, P. J. S. Jacobs, E. Schacht, and C. J. Kirkpatrick, “Porous gelatin hydrogels: 2. in vitro cell interaction study,” Biomacromolecules, vol. 8, pp. 338–44, Mar. 2007, doi: 10.1021/bm 0606869.

[122] K. Hu, F. Cui, Q. Lv, J. Ma, Q. Feng, L. Xu, and D. Fan, “Preparation of fibroin/recombinant human-like collagen scaffold to promote fibroblasts compatibility,” Journal of Biomedical Materials Research Part A, vol. 84, no. 2, pp. 483–490, Feb. 2008, doi: 10.1002/jbm.a.31440.

[123] A. Steinbüchel and R. H. Marchessault, “Biopolymers for medical and pharmaceutical applications,” 2005. [Online]. Available: https:// agris.fao.org/agris-search/search.do?recordID =US201300106381

[124] P. M. Visakh and S. Thomas, “Preparation of bionanomaterials and their polymer nanocomposites from waste and biomass,” Waste Biomass Valorization, vol. 1, no. 1, Mar. 2010, doi: 10.1007/s12649-010-9009-7.
[125] J. W. Weisel, “Fibrinogen and Fibrin,” Advances in Protein Chemistry, vol. 70, pp. 247–299, 2005, doi: 10.1016/S0065-3233(05)70008-5.

[126] M. S. Park, S.-S. Kim, S.-W. Cho, C. Y. Choi, and B.-S. Kim, “Enhancement of the osteogenic efficacy of osteoblast transplantation by the sustained delivery of basic fibroblast growth factor,” Journal of Biomedical Materials Research Part B Applied Biomaterials, vol. 79B, no. 2, pp. 353–359, 2006, doi: https://doi. org/10.1002/jbm.b.30549.

[127] I. Kong, K. Y. Tshai, and M. E. Hoque, “Manufacturing of natural fibre-reinforced polymer composites by solvent casting method,” in Manufacturing of Natural Fibre Reinforced Polymer Composites. New York: Springer International Publishing, 2015, pp. 331–349.

[128] E. Saiz, E. A. Zimmermann, J. S. Lee, U. G. K. Wegst, and A. P. Tomsia, “Perspectives on the role of nanotechnology in bone tissue engineering,” Dental Materials, vol. 29, no. 1, Jan. 2013, doi: 10.1016/j.dental.2012.08.001.

[129] P. R. Chawla, I. B. Bajaj, S. A. Survase, and R. S. Singhal, “Microbial cellulose: Fermentative production and applications,” Food Technology and Biotechnology, vol. 47, no. 2, Jun. 2009.

[130] B. Fan, K. Zhang, X.-F. Jiang, L. Ying, F. Huang, and Y. Cao, “High-performance nonfullerene polymer solar cells based on imide-functionalized wide-bandgap polymers,” Advanced Materials Deerfield Beach Fla, vol. 29, no. 21, Jun. 2017, doi: 10.1002/adma. 201606396.

[131] L.-H. Fu, C. Qi, Y.-J. Liu, W.-T. Cao, and M.-G. Ma, “Sonochemical synthesis of cellulose/ hydroxyapatite nanocomposites and their application in protein adsorption,” Scientific Reports, vol. 8, no. 1, May 2018, doi: 10.1038/ s41598-018-25566-7.

[132] P. Muangman, S. Opasanon, S. Suwanchot, and O. Thangthed, “Efficiency of microbial cellulose dressing in partial-thickness burn wounds,” Journal of the American College of Clinical Wound Specialists, vol. 3, no. 1, Mar. 2011, doi: 10.1016/j.jcws.2011.04.001.
[133] S. G. Kumbhar and S. H. Pawar, “Selffunctionalized, oppositely charged chitosanalginate scaffolds for biomedical applications,” BioTechnology: An Indian Journal, vol. 13, no. 2, pp. 1–15, Mar. 2017.

[134] Sharecare, “What are the five types of wounds? | Injuries, Wound and Trauma,” 2021. [Online]. Available: https://www.sharecare.com/health/ injuries-wound-trauma/what-are-five-typeswounds

[135] Healthline, “Stages of Wound Healing: 4 Stages and What to Expect,” 2019. [Online]. Available: https://www.healthline.com/health/skin/stagesof- wound-healing

[136] H. Adeli, M. T. Khorasani, and M. Parvazinia, “Wound dressing based on electrospun PVA/ chitosan/starch nanofibrous mats: Fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay,” International Journal of Biological Macromolecules, vol. 122, pp. 238– 254, Feb. 2019, doi: 10.1016/j.ijbiomac. 2018.10.115.

[137] D. Arora, N. Sharma, V. Sharma, V. Abrol, R. Shankar, and S. Jaglan, “An update on polysaccharide-based nanomaterials for antimicrobial applications,” Applied Microbiology and Biotechnology, vol. 100, no. 6, Mar. 2016, doi: 10.1007/s00253-016-7315-0.

[138] G.-M. Weng, M. Mariano, J. Lipton, and A. D. Taylor, “MXene films, coatings, and bulk processing,” in 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications. New York: Springer International Publishing, 2019, pp. 197–219.

[139] S. M. Ahsan, M. Thomas, K. K. Reddy, S. G. Sooraparaju, A. Asthana, and I. Bhatnagar, “Chitosan as biomaterial in drug delivery and tissue engineering,” International Journal of Biological Macromolecules, vol. 110, pp. 97–109, Apr. 2018, doi: 10.1016/j.ijbiomac. 2017.08.140.

[140] ScienceDirect, “Drug Delivery,” 2021. [Online]. Available: https://www.sciencedirect.com/ topics/engineering/drug-delivery

[141] National Institute of Biomedical Imaging and Bioengineering, “Drug Delivery Systems,” 2021. [Online]. Available: https://www.nibib. nih.gov/science-education/science-topics/drugdelivery- systems-getting-drugs-their-targetscontrolled- manner

[142] M. Rahim and M. R. H. M. Haris, “Banana trunk fibers (BF) immobilized in chitosan (CS) natural composites (BF-i-CS), and its application in controlled-release of pesticides,” Journal of Natural Fibers, Nov. 2019, doi: 10.1080/15440478.2019.1691119.
[143] J. Vikas, J. Shikha, and S. C. Mahajan, “Nanomedicines based drug delivery systems for anti-cancer targeting and treatment,” Current Drug Delivery, vol. 12, no. 2, pp. 177–191, Mar. 2015.
[144] A. Ataee, Y. Li, D. Fraser, G. Song, and C. Wen, “Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications,” Materials and Design, vol. 137, pp. 345–354, Jan. 2018, doi: 10.1016/j.matdes.2017.10.040.
[145] A. Cigada, M. Cabrini, and P. Pedeferri, “Increasing of the corrosion resistance of the Ti6Al4V alloy by high thickness anodic oxidation,” Journal of Materials Science: Materials in Medicine, vol. 3, no. 6, pp. 408– 412, Nov. 1992, doi: 10.1007/BF00701236.

[146] S. R. Paital and N. B. Dahotre, “Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies,” Materials Science & Engineering R: Report, vol. 66, no. 1, pp. 1–70, Aug. 2009, doi: 10.1016/j.mser.2009.05.001.

[147] Total Materia, “Properties and Applications of Titanium - 6% Aluminum - 4% Vanadium Alloy,” 2021. [Online]. Available: https://www. totalmateria.com/Article86.htm

[148] F. Guillemot, “Recent advances in the design of titanium alloys for orthopedic applications,” Expert Review of Medical Devices, vol. 2, no. 6, pp. 741–748, Nov. 2005, doi: 10.1586/ 17434440.2.6.741.

[149] P. C. Rath, L. Besra, B. P. Singh, and S. Bhattacharjee, “Titania/hydroxyapatite bi-layer coating on Ti metal by electrophoretic deposition: Characterization and corrosion studies,” Ceramics International, vol. 38, no. 4, pp. 3209– 3216, May 2012, doi: 10.1016/j.ceramint. 2011.12.026.

[150] I. Karacan, B. Ben-Nissan, H. A. Wang, A. Juritza, M. V. Swain, W. H. Müller, J. Chou, A. Stamboulis, I. J. Macha, and V.Taraschi, “Mechanical testing of antimicrobial biocomposite coating on metallic medical implants as drug delivery system,” Materials Science and Engineering: C, vol. 104, p. 109757, Nov. 2019, doi: 10.1016/j.msec.2019.109757.

[151] S. Farah, D. G. Anderson, and R. Langer, “Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review,” Advanced Drug Delivery Reviews, vol. 107, pp. 367–392, Dec. 2016, doi: 10.1016/j.addr.2016.06.012.
[152] A. Lasprilla, G. Martinez, B. Lunelli, J. E. Jaimes Figueroa, A. Jardini, and R. Filho, “Synthesis and characterization of poly (Lactic Acid) for use in biomedical field,” Chemical Engineering Transactions, vol. 24, p. 985, Jan. 2011, doi: 10.3303/CET1124165.
[153] L. Nikolic, I. Ristic, B. Adnadjevic, V. Nikolic, J. Jovanovic, and M. Stankovic, “Novel microwaveassisted synthesis of poly(D,L-lactide): The influence of monomer/initiator molar ratio on the product properties,” Sensors, vol. 10, no. 5, pp. 5063–5073, May 2010, doi: 10.3390/ s100505063.

[154] A. Sharif, S. Mondal, and M. E. Hoque, “Polylactic acid (PLA)-based nanocomposites: Processing and properties,” in Bio-based Polymers and Nanocomposite : Preparation, Processing, Properties & Performance. New York: Springer International Publishing, 2019, pp. 233–254.

[155] A. K. Nayak and M. S. Hasnain, Alginates in Drug Delivery. Massachusetts: Academic Press, 2020.

[156] G. I. Olivas and G. V. Barbosa-Cánovas, “Alginate– calcium films: Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity,” LWT - Food Science and Technology, vol. 41, no. 2, pp. 359–366, Mar. 2008, doi: 10.1016/j.lwt.2007.02.015.

[157] C. Remuñán-López and R. Bodmeier, “Mechanical, water uptake and permeability properties of crosslinked chitosan glutamate and alginate films,” Journal of Controlled Release, vol. 44, no. 2, pp. 215–225, Feb. 1997, doi: 10.1016/ S0168-3659(96)01525-8. [158] K. Y. Lee and D. J. Mooney, “Alginate: Properties and biomedical applications,” Progress in Polymer Science, vol. 37, no. 1, pp. 106–126, Jan. 2012, doi: 10.1016/j.progpolymsci.2011. 06.003.

[159] R. Deepika, K. Girigoswami, R. Murugesan, and A. Girigoswami, “Influence of divalent cation on morphology and drug delivery efficiency of mixed polymer nanoparticles,” Current Drug Delivery, vol. 15, no. 5, pp. 652– 657, Jun. 2018, doi: 10.2174/1567201814666 170825160617.

[160] N. Formisano, N. Bhalla, M. Heeran, J. R. Martinez, A. Sarkar, M. Laabei, P. Jolly, C. R. Bowen, J. T. Taylor, S. Flitsch, and P. Estrela, “Inexpensive and fast pathogenic bacteria screening using field-effect transistors,” Biosensors and Bioelectronics, vol. 85, pp. 103–109, Nov. 2016, doi: 10.1016/j.bios.2016.04.063.

[161] ScienceDirect, “Biosensing,” 2021. [Online]. Available: https://www.sciencedirect.com/ topics/engineering/biosensing

[162] E. Zacco, M. I. Pividori, and S. Alegret, “Electrochemical biosensing based on universal affinity biocomposite platforms,” Biosensors and Bioelectronics, vol. 21, no. 7, pp. 1291–1301, Jan. 2006, doi: 10.1016/j.bios.2005.05.016.

[163] W. Chen Q. Li, Y. Wang, X. Yi, J. Zeng, H. Yu, Y. Liu, and J. Li, “Comparative study of aerogels obtained from differently prepared nanocellulose fibers,” ChemSusChem, vol. 7, no. 1, pp. 154–161, Jan. 2014, doi: 10.1002/ cssc.201300950.

[164] S. S. Kistler, “Coherent Expanded-Aerogels,” The Journal of Physical Chemistry, vol. 36, no. 1, pp. 52–64, Jan. 1932, doi: 10.1021/ j150331a003.

[165] H. P. S. A. Khalil, A. S. Adnan, E. B. Yahya, N. G. Olaiya, S. Safrida, Md. S. Hossain, V. Balakrishnan, D. A. Gopakumar, C. K. Abdullah, A. A. Oyekanmi, and D. Pasquini, “A review on plant cellulose nanofibre-based aerogels for biomedical applications,” Polymers, vol. 12, no. 8, Aug. 2020, doi: 10.3390/polym12081759.

[166] X. Wang, M. Han, J. Bao, W. Tu, and Z. Dai, “A superoxide anion biosensor based on direct electron transfer of superoxide dismutase on sodium alginate sol–gel film and its application to monitoring of living cells,” Analytica Chimica Acta, vol. 717, pp. 61–66, Mar. 2012, doi: 10.1016/j.aca.2011.12.045.
[167] V. Buk, E. Emregul, and K. C. Emregul, “Alginate copper oxide nano-biocomposite as a novel material for amperometric glucose biosensing,” Materials Science and Engineering: C, vol. 74, pp. 307–314, May 2017, doi: 10.1016/j.msec. 2016.12.003.

[168] J. Davies, “Where have all the antibiotics gone?,” Candian Journal of Infectious Diseases Medical Microbiology, vol. 17, no. 5, 2006, doi: 10.1155/2006/707296.

[169] A. Dvorzhinskiy, G. Perino, R. Chojnowski, M. Van Der Meulen, F. Ross, M. Bostrom, and X. Yang, “Cerament bone void filler with gentamicin increases bone formation and decreases detectable infection in a rat model of debrided osteomyelitis,” Orthopaedic Proceedings, vol. 97-B, no. SUPP_16, Dec. 2015, doi: 10.1302/1358-992X.97BSUPP_16. EBJIS2015-009.

[170] M. Nilsson, J.-S. Wang, L. Wielanek, K. E. Tanner, and L. Lidgren, “Biodegradation and biocompatability of a calcium sulphatehydroxyapatite bone substitute,” Journal of Bone Joint Surgery British, vol. 86-B, no. 1, Jan. 2004, doi: 10.1302/0301-620X.86B1.14040.

[171] D. Raina, A. Gupta, M. Petersen, W. Hettwer, M. Nally, M. Tägil, M. Zheng, A. Kumar, and L. Lidgren, “A biphasic bone substitute with gentamycin regenerates bone in osteomyelitis with muscle acting as an osteoinductive niche,” Orthopaedic Proceedings, vol. 97-B, no. SUPP_16, Dec. 2015, doi: 10.1302/1358- 992X.97BSUPP_16.EBJIS2015-024.

[172] S. Chen, J. W. Chen, B. Guo, and C. C. Xu, “Preoperative antisepsis with chlorhexidine versus povidone-iodine for the prevention of surgical site infection: A systematic review and metaanalysis,” World Journal of Surgery, vol. 44, no. 5, May 2020, doi: 10.1007/s00268-020-05384-7.

[173] Wikipedia, “Rifampicin,” 2021. [Online]. Available: https://en.wikipedia.org/w/index.ph p?title=Rifampicin&oldid=1020073085

[174] M. A. McNally, J. Y. Ferguson, A. C. K. Lau, M. Diefenbeck, M. Scarborough, A. J. Ramsden, and B. L. Atkins, “Single-stage treatment of chronic osteomyelitis with a new absorbable, gentamicin-loaded, calcium sulphate/ hydroxyapatite biocomposite,” Bone and Joint Journal, vol. 98-B, no. 9, pp. 1289–1296, Sep. 2016, doi: 10.1302/0301-620X.98B9.38057.

[175] T. Lu, Q. Li, W. Chen, and H. Yu, “Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold,” Composites Science and Technology, vol. 94, pp. 132–138, Apr. 2014, doi: 10.1016/j. compscitech.2014.01.020.

[176] M. Power, B. Hosticka, E. Black, C. Daitch, and P. Norris, “Aerogels as biosensors: Viral particle detection by bacteria immobilized on large pore aerogel,” Journal of Non-Crystalline Solids, vol. 285, no. 1, pp. 303–308, Jun. 2001, doi: 10.1016/S0022-3093(01)00471-9.

[177] J. V. Edwards, K. R. Fontenot, N. T. Prevost, N. Pircher, F. Liebner, and B. D. Condon, “Preparation, characterization and activity of a peptide-cellulosic aerogel protease sensor from cotton,” Sensors, vol. 16, no. 11, Nov. 2016, doi: 10.3390/s16111789.

[178] J. Bhandari, H. Mishra, P. K. Mishra, R. Wimmer, F. J. Ahmad, and S. Talegaonkar, “Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery,” International Journal of Nanomedicine, vol. 12, pp. 2021–2031, Mar. 2017, doi: 10.2147/IJN. S124318.

[179] B. Fang, Y.-Z. Wan, T.-T. Tang, C. Gao, and K.-R. Dai, “Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds,” Tissue Engineering Part A, vol. 15, no. 5, Jan. 2009, doi: 10.1089/ ten.tea.2008.0110. [180] F. Yoshii, L. Zhao, R. A. Wach, N. Nagasawa, H. Mitomo, and T. Kume, “Hydrogels of polysaccharide derivatives crosslinked with irradiation at paste-like condition,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interaction Material and Atoms, vol. 208, pp. 320–324, Aug. 2003, doi: 10.1016/S0168-583X(03)00624-4.

[181] F. Liebner, E. Haimer, M. Wendland, M.-A. Neouze, K. Schlufter, P. Miethe, T. Heinze, A. Potthast, and T. Rosenau, “Aerogels from unaltered bacterial cellulose: Application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels,” Macromolecular Bioscience, vol. 10, no. 4, pp. 349–352, 2010, doi: https://doi.org/10.1002/ mabi.200900371.

[182] J. Zhou and Y.-L. Hsieh, “Conductive polymer protonated nanocellulose aerogels for tunable and linearly responsive strain sensors,” ACS Applied Materials & Interfaces, vol. 10, no. 33, pp. 27902–27910, Aug. 2018, doi: 10.1021/ acsami.8b10239.

[183] S. J. Christian, “8 - Natural fibre-reinforced noncementitious composites (biocomposites),” in Nonconventional and Vernacular Construction Materials. 2nd ed., Cambridge, UK: Woodhead Publishing, 2020, pp. 169–187.

[184] O. Faruk and M. S. Ain, “Biofiber reinforced polymer composites for structural applications,” in Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering. Cambridge, UK: Woodhead Publishing, 2013, pp. 18–53. doi: 10.1533/9780857098955.1.18.

[185] D. B. Dittenber and H. V. S. GangaRao, “Critical review of recent publications on use of natural composites in infrastructure,” Composites Part A: Applied Science and Manufacturing, vol. 43, no. 8, Aug. 2012, doi: 10.1016/j. compositesa.2011.11.019.
[186] S. B. Hosseini, “Chapter 13 - Natural fiber polymer nanocomposites,” in Fiber-Reinforced Nanocomposites: Fundamentals and Applications. Amsterdam, Netherlands: Elsevier, 2020, pp. 279– 299. doi: 10.1016/B978-0-12-819904-6.00013-X.

[187] P. Bhagabati, “Chapter 9 - Biopolymers and biocomposites-mediated sustainable high-performance materials for automobile applications,” in Sustainable Nanocellulose and Nanohydrogels from Natural Sources. Amsterdam, Netherlands: Elsevier, 2020, pp. 197–216.
[188] A. S. Getme and B. Patel, “A review: Bio-fiber’s as reinforcement in composites of polylactic acid (PLA),” Materials Today: Proceedings, vol. 26, pp. 2116–2122, Jan. 2020, doi: 10.1016/ j.matpr.2020.02.457.

[189] R. Siakeng, M. Jawaid, H. Ariffin, S. M. Sapuan, M. Asim, and N. Saba, “Natural fiber reinforced polylactic acid composites: A review,” Polymer Composites, vol. 40, no. 2, 2019, doi: https:// doi.org/10.1002/pc.24747.