Statistical Study of the Influence of Fiber Content, Fiber Length and Critical Length in the Mechanical Behavior of Polymeric Composites Reinforced with Carica Papaya Fibers (CPFs)

Main Article Content

Caroliny Santos
Thiago Santos
Marcos Aquino
Rubens Fonseca Lucas Zillio

Abstract

Vegetable fibers are excellent substitutes for manmade fibers because they are resistant and sustentables. This article studied the potencial application of Carica Papaya Fibers (CPF) in polymerics composites of natural resin. A simple model of micromechanical analysis was used for prediction of breaking stress, strain and Young’s modulus in composites with short fibers of Carica Papaya and matrix of polyurethane resin obtained from Ricinus Communis vegetable. The fiber contents were varied between 10–35% and fiber lengths were varied between 3–6%. The result analysis was performed using analysis of variance (ANOVA) to assess the influence of variables on the mechanical properties of each composite produced. The results showed that that increased in fiber length promoted increase in stress values, while the increase in fiber content favored the increased in the stiffness of the composite.

Article Details

How to Cite
Santos, C., Santos, T., Aquino, M., & Lucas Zillio, R. F. (2021). Statistical Study of the Influence of Fiber Content, Fiber Length and Critical Length in the Mechanical Behavior of Polymeric Composites Reinforced with Carica Papaya Fibers (CPFs). Applied Science and Engineering Progress, 14(4), 719–726. https://doi.org/10.14416/j.asep.2021.07.002
Section
Research Articles

References

[1] Y. Qin, “A brief description of textile fibers” in Medical Textile Materials. Amsterdam, Netherlands: Elsevier, 2016, pp. 23–42.

[2] H. V. S. Murthy, “Fibre characteristics,” in Introduction to Textile Fibres. New Delhi, India: Woodhead Publishing, 2016. pp 1–25.

[3] D. N. Saheb and J. P. Jog, “Natural fiber polymer composites: A review,” Advances in Polymer Technology, vol. 18, pp. 351–363, 1999.

[4] C. Santos, T. Santos, R. Fonseca, K. Melo, and M. Aquino, “Phenolic resin and its derivatives” in Phenolic Polymers Based Composite Materials. Singapore: Springer, 2020, pp. 1–11.

[5] T. Santos, C. Santos, R. Fonseca, K. Melo, and M. Aquino, “Natural fibres based phenolic composites” in Phenolic Polymers Based Composite Materials. Singapore: Springer, 2020, pp. 65–75.

[6] M. El-Kashouti, S. Elhadad, and K. Abdel-Zaher, “Printing technology on textile fibers: Review,” Journal of Textiles Coloration and Polymer Science, vol 16,, pp. 129–138, 2019.

[7] I. Markova, “Natural cellulosic fibers” in Textile Fiber Microscopy: A Practical Approach. New Jersey: Willey, 2019, pp. 1–30.

[8] A. Jain, D. Rastogi, and B. Chanana, “Bast and leaf fibres: A comprehensive review,” International Journal of Home Science, vol. 2, no. 1, pp. 313–317, 2016.

[9] C. Santos, “Extração e caracterização das fibras do mamoeiro,” M.S. thesis, Engenharia Têxtil, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil, 2019.

[10] Y.-S. Cheng, P. Mutrakulcharoen, S. Chuetor, K. Cheenkachorn, P. Tantayotai, E. J. Panakkal, and M. Sriariyanun, “Recent situation and progress in biorefining process of lignocellulosic biomass: Toward green economy,” Applied Science Engineering Progress, vol. 13, no. 4, pp. 299–311, 2020, doi : 10.14416/j.asep.2020.08.002.

[11] H. Jamshaid, “Basalt fiber and its applications,” Textile Engineering and Fashion Technology, vol. 1, pp. 254–255, 2017.

[12] S. Amico, “Vegetable fibers as multifunctional materials,” Matéria (Rio Janeiro), vol. 15, pp. 355– 363, 2010.

[13] R. Dunne, D. Desai, R. Sadiku, and J. Jayaramudu, “A review of natural fibres, their sustainability and automotive applications,” Journal of Reinforced Plastics and Composites, vol. 17, pp. 1041–1050, 2016.
[14] C. R. Costa, A. Ratti, and B. Curto, “Product development using vegetable fibers,” International Journal of Design & Nature and Ecodynamics, vol. 9, pp. 237–244, 2014.

[15] K. Moreira, T. Santos, C. Santos, R. Fonseca, M. Melo, and M. Aquino, “Analysis of the physical and mechanical properties of a biobased composite with sisal powder,” in Biobased Composites: Processing, Characterization, Properties, and Applications. New Jersey: Wiley, 2021, pp. 143–151.

[16] K. Melo, T. Santos, C. Santos, R. Fonseca, N. Dantas, and M. Aquino, “Influence of Fiber content in the water absorption and mechanical properties of sisal fiber powder composites,” in Hybrid Fiber Composites. New Jersey: Wiley, 2020, pp. 369–380.

[17] K. Melo, T. Santos, C. Santos, R. Fonseca, N. Dantas, and M. Aquino, “Experimental analysis of styrene, particle size, and fiber content in the mechanical properties of sisal fiber powder composites,” in Hybrid Fiber Composites. New Jersey: Wiley, 2020, pp. 351–367.

[18] A. Saravanakumaar, A. Senthilkumar, S. S. Saravanakumar, S. M. Rangappa, and A. Khan, “Impact of alkali treatment on physico-chemical, thermal, structural and tensile properties of Carica papaya bark fibers,” International Journal Polymer Analysis and Characterization, vol, 23, pp. 529–536, 2018.

[19] A. Kempe, A. Göhre, T. Lautenschläger, A. Rudolf, M. Eder, and C. Neinhuis, “Evaluation of bast fibres of the stem of Carica papaya L. for application as reinforcing material in green composites,” Annual Research & Review in Biology, vol 6, pp. 245–252, 2015.

[20] A. S. Kumaar, A. Senthilkumar, T. Sornakumar, S. S. Saravanakumar, and V. Arthanariesewaran, “Physicochemical properties of new cellulosic fiber extracted from Carica papaya bark,” Journal of Natural Fibers, vol. 16, pp. 175–184, 2017.

[21] K. Melo, T. Santos, C. Santos, R. Fonseca, N. Lucena, J. Medeiros, and M. Aquino, “Study of the reuse potential of the sisal fibers powder as a particulate material in polymer composites,” Journal of Materials Research and Technology, vol. 8, pp. 4019–4025, 2019.

[22] L. Zílio, M. Dias, T. Santos, C. Santos, R. Fonseca, A. Amaral, and M. S. Aquino, “Characterization and statistical analysis of the mechanical behavior of knitted structures used to reinforce composites: Yarn compositions and float stitches,” Journal of Materials Research and Technology, vol. 9, pp. 8323–8336, 2020.

[23] P. Joseph, K. Joseph, and S. Thomas, “Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites,” Composites Science and Technology, vol. 59, no. 11, pp. 1625–1640, 1999.

[24] L. Rohen, F. Margem, S. Monteiro, C. Vieira, B. Madeira de Araujo, and E. Lima, “Ballistic efficiency of an individual epoxy composite reinforced with sisal fibers in multilayered armor,” Materials Research, vol. 18, pp. 55–62, 2015.

[25] T. Sousa, M. Costa, R. Guilherme, W. Orcini, L. Holgado, A. Magdalena, S. Cantazaro-Guimarães, and A. Kinoshita, “Polyurethane derived from Ricinus Communis as graft for bone defect treatments,” Polímeros, vol. 28, pp. 246–255, 2018.

[26] M. Laranjeira, C. Rezende, M. Sá, and C. Silva, “Implantes de resina de poliuretana vegetal (Ricinus communis) na tração linear, fixação e fusão vertebral no cão: Estudo experimental,” Arquivo Brasileiro de Medicina Veterinária e Zootecnia, vol. 56, pp. 602–609, 2004.

[27] A. Casaril, E. Gomes, M. Soares, M. Fredel, and H. Al-Qureshi, “Análise micromecânica dos compósitos com fibras curtas e partículas,” Matéria (Rio Janeiro), vol 12, pp. 408–419, 2007.

[28] T. Santos, C. Santos, M. Aquino, F. Oliveira, and J. Medeiros, “Statistical study of performance properties to impact of Kevlar® woven impregnated with Non-Newtonian Fluid (NNF),” Journal of Materials Research and Technology, vol. 9, pp. 3330–3339, 2020.
[29] R. Nonato and B. Bonse, “A study of PP/PET composites: Factorial design, mechanical and thermal properties,” Polymer Testing, vol 56, pp. 167–173, 2016.

[30] L. Á. Olveira, J. Santos, T. Panzera, R. Freire, L. Vieira, and J. Rubio, “Investigations on short coir fibre–reinforced composites via full factorial design,” Polymers and Polymers Composites, vol 26, pp. 391–399, 2018.

[31] S. Salman, Z. Leman, M. Sultan, M. Ishak, and F. Cardona, “Influence of fiber content on mechanical and morphological properties of woven kenaf reinforced PVB film produced using a hot press technique,” International Journal of Polymer Science, vol. 2016, pp. 1–11, 2016.

[32] D. Romanzini, A. Lavoratti, H. Ornaghi, S. Amico, and A. Zattera, “Influence of fiber content on the mechanical and dynamic mechanical properties of glass/ramie polymer composites,” Materials & Design, vol. 47, pp. 9–15, 2013.

[33] C. Capela, S. Oliveira, J. Pestana, and J. Ferreira, “Effect of fiber length on the mechanical properties of high dosage carbon reinforced,” Procedia Structural Integrity, vol. 5, pp. 539– 546, 2017.

[34] S. Rangappa, S. Siengchin, and H. Dhakal, “Greencomposites: Ecofriendly and sustainability,” Appliede Science Engineering Progress, vol 13, no. 3, p. 183, 2020, doi: 10.14416/j.asep.2020.06.001.

[35] S. Thiagamani, S. Krishnasamy, and S. Siengchin, “Challenges of biodegradable polymers: An environmental perspective,” Applied Science and Engineering Progress, vol 12, vol. 3, p. 149, 2019, doi: 10.14416/j.asep.2019.03.002.

[36] M. Jawaid and S. Siengchin, “Hybrid composites: A versatile materials for future,” Applied Science and Engineering Progress, vol 12, no. 4, p. 223, 2019, doi: 10.14416/j.asep.2019.09.002.