Utilization of Supercritical Carbon Dioxide and Co-solvent n-hexane to Optimize Oil Extraction from Gliricidia sepium Seeds for Biodiesel Production

Main Article Content

Maria Cristina Macawile
Joseph Auresenia


This study was conducted to optimize the supercritical carbon dioxide (scCO2) extraction of oil from Gliricidia sepium seeds using response surface methodology. Initial experiments were carried out using scCO2 and scCO2 with co-solvent n-hexane to determine the effect of co-solvent addition in oil yield. In order to obtain the maximum yield, experiments were conducted using Response Surface Methodology - Face Centered Central Composite Design (RSM – FCCD) under the following conditions: pressure of 20, 30, and 40 MPa, temperature of 50, 60, and 70°C, and CO2 flow rate of 2, 2.5, and 3 mL/min. A second-order polynomial with extended cubic interaction model was significantly fitted (p < 0.05), and a high coefficient determination value (R2 = 0.98) was recorded. At a constant extraction time of 60 minutes, the best extraction yield (12.12%) was obtained at 60°C, 40 MPa, and 2.5 mL/min. The pressure, temperature, and CO2 flow rate were all found to have a significant effect on the oil yield. The oil was used in biodiesel production and its methyl ester composition was analyzed using Gas Chromatography-Flame Ionization Detector (GC-FID).

Article Details

How to Cite
Macawile, M. C., & Auresenia, J. (2021). Utilization of Supercritical Carbon Dioxide and Co-solvent n-hexane to Optimize Oil Extraction from Gliricidia sepium Seeds for Biodiesel Production. Applied Science and Engineering Progress, 15(1). https://doi.org/10.14416/j.asep.2021.09.003
Research Articles


[1] K. Kojima, X. Zhu, and Y. Ogihara, “Saponins from Gliricidia sepium,” Photochemistry, vol. 48, pp. 885–888, Jul. 1998, doi: 10.1016/S0031- 9422(97)00977-1.

[2] J. Stewart, A. Dunsdon, M. Kass, S. Ortiz, A. Larbi, S. Premaratne, B. Tangendjaja, E. Wina, and J. Vargas, “Genetic variation in the nutritive value of Gliricidia sepium 1. Acceptability, intake, digestibility and live eight gain in small ruminants,” Animal Feed Science Technology, vol. 75, pp. 111–124, Oct. 1998, doi: 10.1016/ S0377-8401(98)00197-7.

[3] M. Ngulube, “Evaluation of Gliricidia sepium provenances for alley cropping in Malawi,” Forest Ecology and Management, vol. 64, pp. 191–198, Apr. 1994, doi: 10.1016/0378- 1127(94)90293-3.

[4] P. Thangata and J. Alavalapati, “Agroforestry adoption in southern Malawi: The case of mixed intercropping of Gliricidia sepium and maize,” Agricultural Systems, vol. 78, pp. 57–71, Oct. 2003, doi: 10.1016/S0308-521X(03)00032-5.

[5] T. Beedy, S. Snapp, F. Akinnifesia, and G. W. Sileshi, “Impact of Gliricidia sepium intercropping on soil organic matter fractions in a maize-based cropping system,” Agriculture, Ecosystems & Environment, vol. 138, pp. 139–146, Aug. 2010, doi: 10.1016/j.agee.2010.04.008.

[6] A. Barreto, G. Chaer, and M. Fernandes, “Hedgerow pruning frequency effects on soil quality and maize productivity in alley cropping with Gliricidia sepium in Northeastern Brazil,” Soil & Tillage Research, vol. 120, pp. 112–120, Apr. 2012, doi: 0.1016/j.still.2011.11.010.

[7] C. Wood, J. Stewart, and J. Vargas, “Genetic variation in the nutritive value of Gliricidia sepium. 2. Leaf chemical composition and fermentability by an in vitro gas production technique,” Animal Feed Science and Technology, vol.75, pp. 125–143, Oct. 1998, doi: 10.1016/S0377-8401(98)00198-9.

[8] H. Herath and S. de Silva, “New constituents from Gliricidia sepium,” Fitoterapia, vol. 71, pp. 722–724, Dec. 2000, doi: 10.1016/S0367- 326X(00)00219-7.

[9] H. Herath, R. Dassanayake, A. Prriyadarshani, S. de Silva, G. Wannigama, and J. Jamie, “Isoflavonoids and a pterocarpan from Gliricidia sepium, “ Phytochemistry, vol. 47, pp. 117–119, Jan. 1998, doi: 10.1016/S0031-9422(97)00517-7.
[10] E. de Fernex, M. Díaz, B. de la Mora, P. de Gives, M. Cortazar, and A. Zamilpa, “Anthelmintic effect of 2H-chromen-2-one isolated from Gliricidia sepium against Cooperia punctata,” Experimental Parasitology, vol.178, pp. 1–6, Jul. 2017, doi: 10.1016/j.exppara.2017.04.013.

[11] K. Krishnappa, S. Dhanasekaran, and K. Elumalai, “Larvicidal, ovicidal and pupicidal activities of Gliricidia sepium (Jacq.) (leguminosae) against the malarial vector, Anopheles stephensi Liston (Culicidae:Diptera),” Asian Pacific Journal of Tropical Medicine, vol. 5, no. 8, pp. 598–604, Aug. 2012, doi: 10.1016/S1995-7645(12)60124-2.

[12] J. Montes-Molina, M. Luna-Guido, N. Espinoza- Paz, B. Govaerts, F. Gutierrez-Miceli, and L. Dendooven, “Are extracts of neem (Azadirachta indica A. Juss. (L.)) and Gliricidia sepium (Jacquin) an alternative to control pests on maize (Zea mays L.)?,” Crop Protection, vol. 27, pp. 763–774, 2008, doi: 10.1016/j.cropro. 2007.11.002.
[13] M. Cheng and K. Rosentrater, “Economic feasibility analysis of soybean oil production by hexane extraction,” Industrial Crops and Products, vol. 108, 775–785, Dec. 2017, doi: 10.1016/j.indcrop.2017.07.036.

[14] G. Knothe, M. de Castro, and L. Razon, “Methyl esters from and fatty acid profile of Gliricidia sepium seed oil,” Journal of the American Oil Chemists’ Society, vol. 92, pp. 769–775. Mar. 2015, doi: 10.1007/s11746-015-2634-3.

[15] C. Fornasari, D. Secco, R. Santos, and F. Gurgacz, “Efficiency of the use of solvents in vegetable oil extraction at oleaginous crops,” Renewable & Sustainable Energy Reviews, vol. 80, pp. 121– 124, Dec. 2017, doi: 10.1016/j.rser.2017.05.123.

[16] K. Somnuk, P. Eawlex, and G. Prateepchaikul, “Optimization of coffee oil extraction from spent coffee grounds using four solvents and prototypescale extraction using circulation process,” Agriculture Natural Resources, vol. 51, pp. 181– 189, Jun. 2017, doi: 10.1016/j.anres.2017.01.003.

[17] F. Deswarte, J. Clark, J. Hardy, and P. Rose, “The fractionation of valuable wax products from wheat straw using CO2,” Green Chemistry, vol. 8, pp. 39–42, Nov. 2006.

[18] Y. Athukorala, G. Mazza, and B. Oomah, “Extraction, purification and characterization of wax from flax (Linum usitatissimum) straw,” European Journal of Lipid Science and Technology, vol. 111, pp. 705–714, Jul. 2009, doi: 10.1002/ ejlt.200800269.

[19] V. S. Kislik, Solvent Extraction Classical and Novel Approaches. Amsterdam, Netherlands: Elsevier, 2011.

[20] Y. Vicente, L. Stevens, C. Pando, M. Torralvo, C. Snape, T. Drage, and A. Cabañas, “A new sustainable route in supercritical CO2 to functionalize silica SBA-15 with 3-aminopropyltrimethoxysilane as material for carbon capture,” Chemical Engineering Journal, vol. 264, pp. 886–898, Mar. 2015, doi: 10.1016/j.cej.2014.12.002.

[21] L. Wang, C. Weller, V. Schlegel, T. Carr, and S. Cuppett, “Comparison of supercritical CO2 and hexane extraction of lipids from sorghum distillers grains,” European Journal of Lipid Science and Technology, vol. 109, pp. 567–574, Jun. 2007, doi:10.1002/ejlt.200700018.

[22] E. da Silva Santos, F. Garcia, P. Outuki, J. Hoscheid, P. de Goes, L. Cardozo-Filho, C. Nakamura, and M. Cardoso, “Optimization of extraction method and evaluation method and evaluation of antileishmanial activity of oil and nanoemulsions of Pterodon pubescens benth. fruit extracts,” Experimental Parasitology, vol. 170, pp. 252–260, Nov. 2016, doi: 10.1016/j.exppara.2016.10.004.

[23] C. Trentini, R. Cuco, L. Cardozo-Filho, and C. da Silva, “Extraction of Macauba kernel oil using supercritical carbon dioxide and compressed propane,” Canadian Journal of Chemical Engineering, vol. 165, p. 23236. Apr. 2018, doi: 10.1002/cjce.23236.

[24] K. Santos, E. Klein, M. Fiorese, F. Palú, C. da Silva, and E. da Silva, “Extraction of Morus alba leaves using supercritical CO2 and ultrasoundassisted solvent: Evaluation of β-sitosterol content,” Journal of Supercritical Fluids, vol. 159, p. 104752, May 2020, doi: 10.1016/j.supflu. 2020.104752.

[25] V. Garcia, V. Cabral, É. Zanoelo, C. da Silva, and L. Filho, “Extraction of Mucuna seed oil using supercritical carbon dioxide to increase the concentration of L-Dopa in the defatted meal,” Journal of Supercritical Fluids, vol. 69, pp. 75– 81, Sep. 2012, doi: 10.1016/j.supflu.2012.05.007.
[26] G. Sodeifian, S. Sajadian, and N. Ardestani, “Supercritical fluid extraction of Omega-3 from Dracocephalum kotschyi seed oil: Process optimization and oil properties,” Journal of Supercritical Fluids, vol. 119, pp. 139–149, Jan. 2017, doi: 10.1016/j.supflu.2016.08.019.

[27] N. Yeddes, J. Cherif, A. Jrad, D. Barth, and M. Trabelsi-Ayadi, “Supercritical SC-CO2 and soxhlet n-hexane extract of tunisia Opuntia ficus indica seeds and fatty acids analysis,” Journal of Lipids, vol. 12, pp. 1–6, Jun. 2012, doi: 10.1155/ 2012/914693.

[28] K. Santos, E. da Silva, and C. da Silva, “Supercritical CO2 extraction of favela (Cnidoscolus quercifolius) seed oil: Yield, composition, antioxidant activity, and mathematical modeling,” Journal of Supercritical Fluids, vol. 165, p. 104981, Nov. 2020, doi: 10.1016/j.supflu.2020.104981.

[29] Y. Athukorala and G. Mazza, “Supercritical carbon dioxide and hexane extraction of wax from triticale straw: Content, composition and thermal properties,” Industrial Crops and Products, vol. 31, pp. 550–556, May 2010, doi: 10.1016/j.indcrop.2010.02.011.

[30] M. Khajeh, “Optimization of process variables for essential oil components from satureja hortensis by supercritical fluid extraction using box behnken experimental design,” Journal of Supercritical Fluids, vol. 55, pp. 944–948, Jan. 2011, doi: 10.1016/j.supflu.2010.10.017.

[31] K. Ara and F. Raofie, “Application of response surface methodology for the optimization of supercritical fluid extraction of essential oil from pomegranate (Punica granatum L.) peel,” Journal of Food Science and Technology, vol. 7, Jul. 2016, doi: 10.1007/s13197-016-2284-y.

[32] S. Jokic, M. Bijuk, K. Aladic, M. Bilic, and M. Molnar, “Optimisation of supercritical CO2 extraction of grape seed oil using response surface methodology,” International Journal of Food Science & Technology, vol. 51, pp. 403– 410, Nov. 2015, doi: 10.1111/ijfs.12986.

[33] G. Sodeifian, S. Sajadian, and N. Ardestani, “Optimization of essential oil extraction from Launaea acanthodes Boiss: Utilization of supercritical carbon dioxide and cosolvent,” Journal of Supercritical Fluids, vol. 116, pp. 45– 56, Oct. 2016, doi: 10.1016/j.supflu.2016.05.015.
[34] G. Sodeifian, S. Ghorbandoost, S. Sajadian, and N. Ardestani, “Extraction of oil from Pistacia khinjuk using supercritical carbon dioxide: Experimental and modeling,” Journal of Supercritical Fluids, vol. 110, pp. 265–274, Apr. 2016, doi: 10.1016/j.supflu.2015.12.004.

[35] G. Sodeifian, S. Sajadian, and N. Ardestani, “Extraction of Dracocephalum Kotschyi Boiss using supercritical carbon dioxide: Experimental and optimization,” Journal of Supercritical Fluids, vol. 107, pp. 137–144, Jan. 2016, doi: 10.1016/j.supflu.2015.09.005.

[36] G. Sodeifiana, N. Ardestania, S. Sajadiana, and K. Moghadamian, “Properties of Portulaca oleracea seed oil via supercritical fluid extraction: Experimental and optimization,” Journal of Supercritical Fluids, vol. 135, pp. 34–44, May 2018, doi: 10.1016/j.supflu.2017.12.026.

[37] I. Ezeagu, K. Petzke, E. Lange, and C. Metges, “Fat content and fatty acid composition of oils extracted from selected wild-gathered tropical plant seeds from Nigeria,” Journal of the American Oil Chemist’s Society, vol. 75, pp. 1031– 1035, Aug. 1998, doi: 10.1007/s11746-998- 0282-6.
[38] A. Adewuyi and R. Oderinde, “Lipids classes, fatty acids, fat soluble vitamins, and molecular species of the triacylglycerol of Baphia nitida and Gliricidia sepium seed oils,” International Journal of Food Properties, vol. 16, pp. 634–642, Jan. 2011, doi: 10.1080/10942912.2011.558230.