Handgrip Automotive Prototype of Polypropylene Reinforced Benzoyl Treated Kenaf and Sugar Palm Fibers: A Facile Flexural Strength and Hardness Studies


  • Mohd Izwan Shaharuddin Centre of Advanced Engineering Materials and Composites Research, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Selangor, Malaysia
  • Mohd Sapuan Salit Centre of Advanced Engineering Materials and Composites Research, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Selangor, Malaysia
  • Mohd Zuhri Mohamed Yusoff Centre of Advanced Engineering Materials and Composites Research, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Selangor, Malaysia
  • Mohamed Abdul Rahman Department of Manufacturing and Material Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia




Kenaf, Sugar palm, Fiber, Handgrip, Prototype, Polypropylene, Flexural, Hardness, Weight reduction


Combining two or more different types of fibers within a polymer matrix is defined as hybrid composites. The requirements for an impressive hybrid composites include compatible weight ratio, good compressive strength, low-cost production and ease of fabrication. Moreover, hybrid composites provide a combination of remarkable mechanical properties including tensile modulus, compression, impact strength, flexural and hardness, which are comparable with the metal-based product materials. Recently, hybrid composites have been established due to their remarkable performance and efficiency. This study presents a facile analysis of polypropylene (PP) reinforced benzoyl treated kenaf and sugar palm fibers for handgrip prototype application. The materials were further analyzed for their materials molding modeling, and facile mechanical behavior including flexural strength, flexural modulus, Rockwell hardness (HRF), and also weight reduction percentage test. Hybrid composite T-SP7K3 shows higher flexural strength and flexural modulus compared to the ABS (Perodua Axia) at 339.5 MPa and 17.19 MPa, respectively. In addition, the HRF testing shows a higher value of hybrid composite (at 92.96 N/mm2) compared with the ABS handgrip with. Furthermore, the weight reduction percentage also recorded hybrid composite T-SP7K3 with the highest value at 22.7%.


Download data is not yet available.


J. H. S. A. Júnior, H. L. O. Júnior, S. C. Amico, and F. D. R. Amado, “Study of hybrid intralaminate curaua/glass composites,” Materials & Design, vol. 42, pp. 111–117, Dec. 2012, doi: 10.1016/j. matdes.2012.05.044.

M. Puttegowda, H. Pulikkalparambil, and S. M. Rangappa, “Trends and developments in natural fiber composites,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 543–552, 2021, doi: 10.14416/j.asep.2021.06.006.

S. M. Rangappa and S. Siengchin, “A personal view exploring the applicability of natural fibers for the development of biocomposites,” Express Polymer Letters, vol. 15, no. 3, pp. 193–193, Mar. 2021, doi: 10.3144/expresspolymlett.2021.17.

S. M. Rangappa, S. Siengchin, and H. M. Dhakal, “Green-composites: Ecofriendly and sustainability,” Applied Science and Engineering Progress, vol. 13, no. 3, pp. 183–184, 2020, doi: 10.14416/j.asep.2020.06.001.

M. Ramesh, C. Deepa, L. R. Kumar, and S. Siengchin, “Life-cycle and environmental impact assessments on processing of plant fibres and its bio-composites: A critical review,” Journal of Industrial Textiles, May 2020, doi: 10.1177/1528083720924730.

S. M. Rangappa, S. Siengchin, J. Parameswaranpillai, M. Jawaid, and T. Ozbakkaloglu, “Lignocellulosic fiber reinforced composites: Progress, performance, properties, applications, and future perspectives,” Polymer Composites, vol. 43, no. 2, pp. 645–691, Feb. 2022, doi: 10.1002/pc.26413.

I. O. Bakare, F. E. Okieimen, C. Pavithran, H. P. S. Abdul Khalil, and M. Brahmakumar, “Mechanical and thermal properties of sisal fiberreinforced rubber seed oil-based polyurethane composites,” Materials & Design, vol. 31, no. 9, pp. 4274–4280, Oct. 2010, doi: 10.1016/j.matdes. 2010.04.013.

L. Yan, N. Chouw, and K. Jayaraman, “Flax fibre and its composites – A review,” Composites Part B: Engineering, vol. 56, pp. 296–317, Jan. 2014, doi: 10.1016/j.compositesb.2013.08.014.

M. Boopalan, M. Niranjana, and M. J. Umapathy, “Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites,” Composites Part B: Engineering, vol. 51, pp. 54–57, Aug. 2013, doi: 10.1016/j.compositesb.2013.02.033.

M. S. Sreekala, J. George, M. G. Kumaran, and S. Thomas, “The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres,” Composites Science Technology, vol. 62, no. 3, pp. 339–353, 2002, doi: 10.1016/S0266- 3538(01)00219-6.

M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, “Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview,” Composites Part B: Engineering, vol. 43, no. 7, pp. 2883–2892, Oct. 2012, doi: 10.1016/j. compositesb.2012.04.053.

N. Saba, M. Jawaid, K. R. Hakeem, M. T. Paridah, A. Khalina, and O. Y. Alothman, “Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective,” Renewable and Sustainable Energy Reviews, vol. 43, pp. 446–459, Feb. 2015, doi: 10.1016/j.rser.2014.10.029.

M. S. Salit, “Tropical natural fibres and their properties,” in Tropical Natural Fiber Composites. East Gateway, Singapore: Springer, 2014, pp. 15–38.

A. R. de Luzuriga, R. Martin, N. Markaide, A. Rekondo, G. Cabañero, J. Rodríguez, and I. Odriozola, “Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites,” Material Horizon, vol. 3, no. 3, pp. 241–247, Mar. 2016, doi: 10.1039/ C6MH00029K.

T. Väisänen, O. Das, and L. Tomppo, “A review on new bio-based constituents for natural fiber-polymer composites,” Journal of Cleaner Production, vol. 149, pp. 582–596, Apr. 2017, doi: 10.1016/j.jclepro.2017.02.132.

B. T. Astrom, Manufacturing of Polymer Composites. Oxfordshire, UK: Routledge, 2018, 2014, pp. 15–38.

F. Henning, L. Kärger, D. Dörr, F. J. Schirmaier, J. Seuffert, and A. Bernath, “Fast processing and continuous simulation of automotive structural composite components,” Composites Science and Technology, vol. 171, pp. 261–279, Feb. 2019, doi: 10.1016/j.compscitech.2018.12.007.

O. Faruk, A. K. Bledzki, H.-P. Fink, and M. Sain, “Progress report on natural fiber reinforced composites,” Macromolecular Material Engineering, vol. 299, no. 1, pp. 9–26, Jun. 2013, doi: 10.1002/mame.201300008.

P. L. Jain, Principles of Foundry Technology. New Dehli, India: Tata McGraw-Hill Education, 2003.

C. O. Mgbemena, D. Li, M.-F. Lin, P. D. Liddel, K. B. Katnam, V. K. Thakur, and H. Y. Nezhad, “Accelerated microwave curing of fibrereinforced thermoset polymer composites for structural applications: A review of scientific challenges,” Composites Part A: Applied Science and Manufacturing, vol. 115, pp. 88–103, Dec. 2018, doi: 10.1016/j.compositesa.2018.09.012.

F. Trochu, E. Ruiz, V. Achim, and S. Soukane, “Advanced numerical simulation of liquid composite molding for process analysis and optimization,” Composites Part A: Applied Science And Manufacturing, vol. 37, no. 6, pp. 890–902, Jun. 2006, doi: 10.1016/j.compositesa. 2005.06.003.

M. G. Bader, “Molding processes – An overview,” in Processing and Fabrication Technology, L. A. Carson and J. W. Gillespie, Eds. Oxfordshire, UK: Routledge, 2017, pp. 87–101.

S. Ma, I. Gibson, G. Balaji, and Q. J. Hu, “Development of epoxy matrix composites for rapid tooling applications,” Journal Of Materials Processing Technology, vol. 192–193, pp. 75–82, Oct. 2007, doi: 10.1016/j.jmatprotec.2007.04.086.

P. Galli, S. Danesi, and T. Simonazzi, “Polypropylene based polymer blends: Fields of application and new trends,” Polymer Engineering Science, vol. 24, no. 8, pp. 544–554, Jun. 1984, doi: 10.1002/pen.760240807.

Y. Li, X. Yi, T. Yu, and G. Xian, “An overview of structural-functional-integrated composites based on the hierarchical microstructures of plant fibers,” Advanced Composites and Hybrid Materials, vol. 1, pp. 231–246, Jan. 2018, doi: 10.1007/s42114-017-0020-3.

B. Wang, S. Ma, S. Yan, and J. Zhu, “Readily recyclable carbon fiber reinforced composites based on degradable thermosets: A review,” Green Chemistry, vol. 21, pp. 5781–5796, Sep. 2019, doi: 10.1039/C9GC01760G.

M. Boopalan, M. Niranjana, and M. J. Umapathy, “Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites,” Composites Part B: Engineering, vol. 51, pp. 54–57, Aug. 2013, doi: 10.1016/j.compositesb.2013.02.033.

S. M. Izwan, S. M. Sapuan, M. Y. M. Zuhri, and A. R. Muhamed, “Effect of benzoyl treatment on the performance of sugar palm/kenaf fiberreinforced polypropylene hybrid composites,” Textile Research Journal, vol. 92, no. 5–6, Sep. 2021, doi: 10.1177/00405175211043248.

S. M. Izwan, S. M. Sapuan, M. Y. M. Zuhri, and A. R. Muhamed, “Thermal stability and dynamic mechanical analysis of benzoylation treated sugar palm/kenaf fiber reinforced polypropylene hybrid composites,” Polymers, vol. 13, no. 17, pp. 2961– 2978, Aug. 2021, doi: 10.3390/polym13172961.

P. K. Kushwaha and R. Kumar, “Influence of chemical treatments on the mechanical and water absorption properties of bamboo fiber composites,” Journal of Reinforced Plastics and Composites, vol. 30, no. 1, pp. 73–85, Sep. 2010, doi: 10.1177/0731684410383064.

A. S. Singha and A. K. Rana, “A study on benzoylation and graft copolymerization of lignocellulosic cannabis indica fiber,” Journal of Polymer Environment, vol. 20, pp. 361–371, Oct. 2011, doi: 10.1007/s10924-011-0370-9.

P. Jagadeesh, M. Puttegowda, S. M. Rangappa, and S. Siengchin, “A review on extraction, chemical treatment, characterization of natural fibers and its composites for potential applications,” Carbohydrate Polymers, vol. 42, no. 12, pp. 6239– 6264, Sep. 2021, doi: 10.1002/pc.26312.

S. M. Rangappa, S. Siengchin, J. Parameswaranpillai, M. Jawaid, C. I. Pruncu, and A. Khan, “A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization,” Carbohydrate Polymers, vol. 207, pp. 108–121, Mar. 2019, doi: 10.1016/j.carbpol.2018.11.083.

M. F. Ashby, “Materials selection – The basics,” in Materials Selection In Mechanical Design. Oxford, UK: Butterworth-Heinemann, 2011, pp. 65–83.

C. Zweben, W. Smith, and M. Wardle, “Test methods for fiber tensile strength, composite flexural modulus, and properties of fabric-reinforced laminates,” in Composite Materials: Testing and Design (Fifth Conference). Los Angeles: American Society for Testing and Materials, 1978,

S.-Y. Fun, X.-Q. Feng, B. Lauke, and Y.-W. Mai, “Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites,” Composites Part B Engineering, vol. 39, no. 6, pp. 933–961, Sep. 2008, doi: 10.1016/j.compositesb. 2008.01.002.

E. Broitman, “Indentation hardness measurements at macro-, micro-, and nanoscale: A critical overview,” Tribology Letters, vol. 65, Sep. 2008, doi: 10.1007/s11249-016-0805-5.

M. D. Drory and J. W. Hutchinson, “Measurement of the adhesion of a brittle film on a ductile substrate by indentation,” in Proceedings of the Royal Society of London Series A, Jan. 1996, vol. 452, pp. 2319–2341, doi: 10.1098/ rspa.1996.0124.

M. N. Mandikos, G. P. McGivney, E. Davis, P. J. Bush, and J. M. Carter, “A comparison of the wear resistance and hardness of indirect composite resins,” The Journal of Prosthetic Dentistry, vol. 85, no. 4, pp. 386–395, Apr. 2001, doi: 10.1067/mpr.2001.114267.

I. O. Oladele, T. F. Omotosho, and A. A. Adediran, “Polymer-based composites: An indispensable material for present and future applications,” International Journal of Polymer Science, vol. 2020, Oct. 2020, Art no. 8834518, doi: 10.1155/2020/8834518.

A. Brecher, J. Brewer, S. Summers, and S. Patel, “Characterizing and enhancing the safety of future plastic and composite intensive vehicles (PCIVs),” presented at the International Technology Conference Enhanced Safety Vehicles, Washington, DC, 2009.

A. Elmarakbi, Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness. Hoboken, New Jersey: Wiley, 2013.






Research Articles