Oil-palm Based Nanocellulose Reinforced Thermoplastic Polyurethane for Plastic Encapsulation of Biomedical Sensor Devices: Water Absorption, Thickness Swelling and Density Properties
Main Article Content
Abstract
Oil palm nanocellulose has been demonstrated to display a wide range of unique properties for many fields. They are suitable for biomedical applications and have been used in this domain for decades. The current variety of nanocellulose fibers allows the development of new nanocomposites. This work fabricated oil palm nanocellulose with variations of fiber loading (1, 2, 3, 4, and 5 wt%) and thermoplastic polyurethane (TPU) polymer matrix by using a mechanical stirring followed by hot pressing methods. The physical characters of nanocellulose oil palm reinforced TPU nanocomposites, such as water absorption, thickness swelling, and density were characterized. The fiber loading of oil palm nanocellulose content at 5 wt% shows the highest water uptake, thickness swelling, and the lowest density properties of oil palm nanocellulose reinforced TPU nanocomposites.
Article Details
References
L. Lamanna, F. Rizzi, V. R. Bhethanabotla, and M. D. Vittorio, “Conformable surface acoustic wave biosensor for E-coli fabricated on PEN plastic film,” Biosensors and Bioelectronics, vol. 163, p. 112164, 2020.
S. Kumari, S. Mohapatra, and R. S. Moirangthem, “Development of flexible plasmonic plastic sensor using nanograting textured laminating film,” Materials Research Express, vol. 4, no. 2, p. 25008, 2017.
K. Park, P. Tran, N. Deaton, and J. P. Desai, “Multi-walled carbon nanotube (MWCNT)/ PDMS-based flexible sensor for medical applications,” in 2019 International Symposium on Medical Robotics (ISMR), 2019, pp. 1–8.
Q. Xue, Z. Li, Q. Wang, W. Pan, Y. Chang, and X. Duan, “Nanostrip flexible microwave enzymatic biosensor for noninvasive epidermal glucose sensing,” Nanoscale Horizons, vol. 5, no. 6, pp. 934–943, 2020.
P. K. Singh and A. Singal, “Reducing the hygroscopic swelling in MEMS sensor using different mold materials,” International Journal of Electrical and Computer Engineering, vol. 10, no.1, pp. 494–499, 2020.
T. Someya, Z. Bao, and G. G. Malliaras, “The rise of plastic bioelectronics,” Nature, vol. 540, no. 7633, pp. 379–385, 2016. [7] D. Huang, F. Liao, S. Molesa, D. Redinger, and V. Subramanian, “Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics,” Journal of The Electrochemical Society, vol. 150, no. 7, p. G412, 2003.
M. Rasheed, M. Jawaid, B. Parveez, A. Zuriyati, and A. Khan, “Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre,” International Journal of Biological Macromolecules, vol. 160, pp. 183–191, 2020.
M. D. Alotabi, B. A. Alshammari, N. Saba, O. Y. Alothman, L. K. Kian, A. Khan, and M. Jawaid, “Microcrystalline cellulose from fruit bunch stalk of date palm: Isolation and characterization,” Journal of Polymers and the Environment, vol. 28, no. 6, pp. 1766–1775, 2020.
A. Khan, M. Jawaid, L. K. Kian, A. A. P. Khan, and A. M. Asiri, “Isolation and production of nanocrystalline cellulose from conocarpus fiber,” Polymers (Basel), vol. 13, no. 11, p. 1835, 2021.
A. Khan, A. M. Asiri, M. Jawaid, and N. Saba, “Effect of cellulose nano fibers and nano clays on the mechanical, morphological, thermal and dynamic mechanical performance of kenaf/epoxy composites,” Carbohydrate Polymers, vol. 239, p. 116248, 2020.
M. Asad, N. Saba, A. M. Asiri, M. Jawaid, E. Indarti, and W. D. Wanrosli, “Preparation and characterization of nanocomposite films from oil palm pulp nanocellulose/poly (vinyl alcohol) by casting method,” Carbohydrate Polymers, vol. 191, pp. 103–111, 2018.
C. F. Mok, Y. C. Ching, F. Muhamad, N. A. Abu Osman, and R. Singh, “Poly(vinyl alcohol)- α-chitin composites reinforced by oil palm empty fruit bunch fiber-derived nanocellulose,” International Journal of Polymer Analysis and Characterization, vol. 22, no. 4, pp. 294–304, 2017.
Y. C. Ching, A. Rahman, K. Y. Ching, N. L. Sukiman, and H. C. Cheng, “Preparation and characterization of polyvinyl alcohol-based composite reinforced with nanocellulose and nanosilica,” BioResources, vol. 10, no. 2, pp. 3364–3377, 2015.
N. A. Nasimudeen, S. Karounamourthy, J. Selvarathinam, S. M. K. Thiagamani, H. Pulikkalparambil, S. Krishnasamy, and C. Muthukumar, “Mechanical, absorption and swelling properties of vinyl ester based natural fibre hybrid composites,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 680– 688, 2021, doi: 10.14416/j.asep.2021.08.006.
M. E. Hoque, A. M. Rayhan, and S. I. Shaily, “Natural fiber-based green composites: Processing, properties and biomedical applications,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 689–718, 2021, doi: 10.14416/j.asep. 2021.09.005.
N. Lisdayana, F. Fahma, T. C. Sunarti, and E. S. Iriani, “Thermoplastic starch–PVA nanocomposite films reinforced with nanocellulose from oil palm empty fruit bunches (OPEFBs): Effect of starch type,” Journal of Natural Fibers, vol. 17, no. 7, pp. 1069–1080, 2020.
M. Khalifa, S. Anandhan, G. Wuzella, H. Lammer, and A. R. Mahendran, “Thermoplastic polyurethane composites reinforced with renewable and sustainable fillers–a review,” Polymer-Plastics Technology and Materials, vol. 59, no. 16, pp. 1751–1769, 2020.
A. Atiqah, M. Jawaid, S. M. Sapuan, M. R. Ishak, M. N. M. Ansari, and R. A. Ilyas, “Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites,” Journal of Materials Research and Technology, vol. 8, no. 5, pp. 3726–3732, Sep. 2019, doi: 10.1016/j.jmrt.2019.06.032.
M. R. Amri, C. T. Guan, S. S. Osman Al-Edrus, F. M. Yasin, and S. F. Mohamad, “Effect of cellulose nanofibrils on the properties of jatropha oilbasedwaterborne polyurethane nanocomposite film,” Polymers (Basel), vol. 13, no. 9, 2021, doi: 10.3390/polym13091460.
K. Kępa, N. Amiralian, D. J. Martin, and L. Grøndahl, “Grafting from cellulose nanofibres with naturally-derived oil to reduce water absorption,” Polymer (Guildf), vol. 222, 2021, doi: 10.1016/j. polymer.2021.123659.
E. Ogunsona, S. Hojabr, R. Berry, and T. H. Mekonnen, “Nanocellulose-triggered structural and property changes of acrylonitrile-butadiene rubber films,” International Journal of Biological Macromolecules, vol. 164, pp. 2038–2050, 2020, doi: 10.1016/j.ijbiomac.2020.07.202.
A. G. de Souza, G. F. de Lima, V. K. Rangari, and D. dos Santos Rosa, “Investigation of surfacepegylated nanocellulose as reinforcing agent on PBAT biodegradable nanocomposites,” Polymer Composites, vol. 41, no. 10, pp. 4340–4352, 2020, doi: 10.1002/pc.25716.
K. D. H. N. Kahavita, A. M. P. B. Samarasekara, D. A. S. Amarasinghe, and L. Karunanayake, “Nanofibrillated cellulose reinforced polypropylene composites: Influence of silane (SI-69) surface modification,” Cellulose Chemistry and Technology, vol. 54, no. 7–8, pp. 789–797, 2020, doi: 10.35812/CelluloseChemTechnol.2020.54.78.
T. B. Shalom, Y. Nevo, D. Leibler, Z. Shtein, C. Azerraf, S. Lapidot, and O. Shoseyov, “Cellulose nanocrystals (CNCs) induced crystallization of Polyvinyl Alcohol (PVA) super performing nanocomposite films,” Macromolecular Bioscience, vol. 19, no. 3, p. e1800347, 2019, doi: 10.1002/ mabi.201800347.
P. Zhang, Y.-Y. He, D. Gao, Y. Cai, and B. Liu, “Hydrolytic and thermal degradation of polyethylene glycol compatibilized poly(lactic acid)-nanocrystalline cellulose bionanocomposites,” Journal of Applied Polymer Science, vol. 136, no. 2, 2019, doi: 10.1002/app.46933.
E. Espinosa, D. Filgueira, A. Rodríguez, and G. Chinga-Carrasco, “Nanocellulose-based inks— effect of alginate content on the water absorption of 3D printed constructs,” Bioengineering, vol. 6, no. 3, p. 65, 2019.
A. A. Septevani, A. Rifathin, A. A. Sari, Y. Sampora, G. N. Ariani, and D. Sondari, “Oil palm empty fruit bunch-based nanocellulose as a super-adsorbent for water remediation,” Carbohydrate Polymers, vol. 229, p. 115433, 2020.
H. Mohit and V. A. M. Selvan, “Effect of a novel chemical treatment on the physico-thermal properties of sugarcane nanocellulose fiber reinforced epoxy nanocomposites,” International Polymer Processing, vol. 35, no. 2, pp. 211–220, 2020, doi: 10.3139/217.3855.
T. S. Franco, R. M. J. Amezcua, A. V. Rodrìguez, S. G. Enriquez, M. R. Urquíza, E. M. Mijares, and G. Bolzon de Muniz, “Carboxymethyl and nanofibrillated cellulose as additives on the preparation of chitosan biocomposites: Their influence over films characteristics,” Journal of Polymers and the Environment, vol. 28, no. 2, pp. 676–688, 2020, doi: 10.1007/s10924-019- 01639-0.
R. A. Ilyas, S. M. Sapuan, A. Atiqah, R. Ibrahim, H. Abral, M. R. Ishak, E. S. Zainudin, N. M. Nurazzi, M. S. N. Atikah, M. N. M. Ansari, M. R. M. Asyraf, A. B. M. Supian, and H. Ya, “Sugar palm (Arenga pinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier properties,” Polymer Composites, vol. 41, no. 2, pp. 459–467, 2020.
P. Zhang, Y. Lu, M. Fan, P. Jiang, and Y. Dong, “Modified cellulose nanocrystals enhancement to mechanical properties and water resistance of vegetable oil-based waterborne polyurethane,” Journal of Applied Polymer Science, vol. 136, no. 47, 2019, doi: 10.1002/app.48228.
R. Syafiq, S. M. Sapuan, and M. R. M. Zuhri, “Antimicrobial activity, physical, mechanical and barrier properties of sugar palm based nanocellulose/ starch biocomposite films incorporated with cinnamon essential oil,” Journal of Materials Research and Technology, vol. 11, pp. 144–157, 2021.
A. Atiqah, M. Jawaid, M. R. Ishak, and S. M. Sapuan, “Moisture absorption and thickness swelling behaviour of sugar palm fibre reinforced thermoplastic polyurethane,” Procedia Engineering, vol. 184, pp. 581–586, 2017, doi: 10.1016/j. proeng.2017.04.142.
A. Atiqah, M. Jawaid, S. M. Sapuan, and M. R. Ishak, “Physical properties of silane-treated sugar palm fiber reinforced thermoplastic polyurethane composites,” in IOP Conference Series: Materials Science and Engineering, Jun. 2018, vol. 368, no. 1, doi: 10.1088/1757-899X/368/1/012047.