Enhanced Performance of Polylactide Film via Simultaneous Biaxial Stretching and Silane Coupling Agent as a Thermal Shrinkable Film

Main Article Content

Suttinun Phongtamrug
Rommaneeya Makhon
Thanapa Wiriyosuttikul

Abstract

Biaxial stretching technique has been known to improve the toughness of polylactide (PLA) film. Furthermore, blending with an additive is another way to control the mechanical properties of the product. The integrated effect of simultaneous biaxial stretching and blending with silane coupling agent on the properties of PLA film is examined in this study. The PLA pellets are melt compounded with various amounts of 3-aminopropyltriethoxy silane (APS). Then, the films are prepared by cast film extrusion and simultaneous biaxial stretching process with a stretching speed of 75 mm s–1. The relationships among the crystallinity, tensile properties, and thermal shrinkage of the prepared films are investigated. The crystallinity of PLA is significantly induced in the film by the stretching technique. An increase in the additive content also facilitates the polymeric crystallinity. The elongation at the break of the biaxially stretched film increases with the additive content, which corresponds with the PLA crystallinity. Compared to the pristine PLA film, the addition of 1% APS improves tensile strength in a transverse direction of the film about 10 times. The thermal shrinkage of the obtained films was evaluated to assess their applications as heat-shrinkable films. The prepared films show a thermal shrinkage of 45%, which are comparable to that of a commercial shrink film.

Article Details

How to Cite
Phongtamrug, S., Makhon, R., & Wiriyosuttikul, T. (2023). Enhanced Performance of Polylactide Film via Simultaneous Biaxial Stretching and Silane Coupling Agent as a Thermal Shrinkable Film. Applied Science and Engineering Progress, 16(2), 5699. https://doi.org/10.14416/j.asep.2022.02.008
Section
Research Articles

References

S. Ebnesajjad, Plastic Films in Food Packaging. MA: Elsevier, 2013.

D. Garlotta, “A literature review of poly(lactic acid),” Journal of Polymers and the Environment, vol. 9, pp. 63–84, 2001, doi: 10.1023/A: 1020200822435.

R Auras, B. Harte, and S. Selke, “An overview of polylactides as packaging materials,” Macromolecular Bioscience, vol. 4, pp. 835–864, 2004, doi: 10.1002/mabi.200400043.

L. T. Lim, R. Auras, and M. Rubino, “Processing technologies for poly(lactic acid),” Progress in Polymer Science, vol. 33, pp. 820–852, 2008, doi: 10.1016/j.progpolymsci.2008.05.004.

X. Zhao, H. Hu, X. Wang, X. Yu, W. Zhou, and S. Peng, “Super tough poly(lactic acid) blends: A comprehensive review,” RSC Advances, vol. 10, p. 13316, 2020, doi: 10.1039/D0RA01801E.

R. Rangari and N. Vasanthan, “Study of strain-induced crystallization and enzymatic degradation of drawn poly(L-lactic acid) (PLLA) films,” Macromolecules, vol. 45, pp. 7397–7403, 2012, doi: 10.1021/ma301482j.

C. Zhou, H. Li, W. Zhang, J. Li, S. Huang, Y. Meng, J. de Claville Christiansen, D. Yu, Z. Wu, and S. Jiang, “Thermal strain-induced cold crystallization of amorphous poly(lactic acid),” CrystEngComm, vol. 18, pp. 3237–3246, 2016, doi: 10.1039/C6CE00464D.

J. Breil, “Future trends for biaxially oriented films and orienting lines,” in Biaxial Stretching of Film: Principles and Applications, M. T. DeMeuse, Ed. UK: Woodhead Publishing Limited, 2011.

J. H. Wu, M. S. Yen, C. P. Wu, C. H. Li, and M. C. Kuo, “Effect of biaxial stretching on thermal properties, shrinkage and mechanical properties of poly(lactic acid) films,” Journal of the Polymers and Environment, vol. 21, pp. 303–311, 2013, doi: 10.1007/s10924-012-0523-5.

P. Jariyasakoolroj, K. Tashiro, H. Wang, H. Yamamoto, W. Chinsirikul, N. Kerddonfag, and S. Chirachanchai, “Isotropically small crystalline lamellae induced by high biaxial-stretching rate as a key microstructure for super-tough polylactide film,” Polymer, vol. 68, pp. 234–245, 2015, doi: 10.1016/ j.polymer.2015.05.006.

Z. Li, L. Ye, X. Zhao, P. Coates, F. Caton-Rose, and M. Martyn, “High orientation of long chain branched poly(lactic acid) with enhanced blood compatibility and bionic structure,” Journal of Biomedical Materials Research Part A, vol. 104, pp. 1082–1089, 2016, doi: 10.1002/ jbm.a.35640.

Z. Li, L. Ye, X. Zhao, P. Coates, F. Caton-Rose, and M. Martyn, “Structure and biocompatibility of highly oriented poly(lactic acid) film produced by biaxial solid hot stretching,” Journal of Industrial and Engineering Chemistry, vol. 52, pp. 338–348, 2017, doi: 10.1016/j.jiec.2017. 04.008.

E. P. Pluddemann, Silane Coupling Agents. New York: Springer Science & Business Media, 1982.

H. Schmidt, H. Scholze, and A. Kaiser, “Principles of hydrolysis and condensation reaction of alkoxysilanes,” Journal of Non-Crystalline Solids, vol. 63, pp. 1–11, 1984, doi: 10.1016/0022- 3093(84)90381-8.

C. Han, J. Bian, H. Liu, L. Han, S. Wang, L. Dong, and S. Chen, “An investigation of the effect of silane water-crosslinking on the properties of poly(L-lactide),” Polymer International, vol. 59, pp. 695–703, 2010, doi: 10.1002/pi.2760.

J. Jeong, M. Ayyoob, J. H. Kim, S. W. Nam, Y. J. Kim, “In situ formation of PLA-grafted alkoxysilanes for toughening a biodegradable PLA stereocomplex thin film,” RSC Advances, vol. 9, p. 21748, 2019, doi: 10.1039/C9RA03299A.

Y. Lu, M. C. Cueva, E. Lara-Curzio, and S. Ozcan, “Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization,” Carbohydrate Polymers, vol. 131, pp. 208–217, 2015, doi: 10.1016/j.carbpol.2015.05.047.

N. Moazeni, Z. Mohamad, and N. Dehbari, “Study of silane treatment on poly-lactic acid (PLA)/sepiolite nanocomposite thin films,” Journal of Applied Polymer Science, vol. 132, p. 41428, 2015, doi: 10.1002/app.41428.

X. Meng, N. A. Nguyen, H. Tekinalp, E. Lara- Curzio, and S. Ozcan, “Supertough PLA-silane nanohybrids by in situ condensation and grafting,” ACS Sustainable Chemistry & Engineering, vol. 6, pp. 1289–1298, 2018, doi: 10.1021/ acssuschemeng.7b03650.

L. Boonthamjinda, N. Petchwatana, S. Covavisaruch, W. Chinsirikul, and N. Kerddonfag, “Biaxially-stretched poly(lactic acid) (PLA) and rubber-toughened PLA films: Tensile and physical properties,” Key Engineering Materials, vol. 659, pp. 363–367, 2015, doi: 10.4028/www. scientific.net/KEM.659.363.

P. Jariyasakoolroj, K. Tashiro, W. Chinsirikul, N. Kerddonfag, and S. Chirachanchai, “Microstructural analyses of biaxially oriented polylactide/ modified thermoplastic starch film with drastic improvement in toughness,” Macromolecular Materials and Engineering, vol. 304, p. 1900340, 2019, doi: 10.1002/mame.201900340.

R. Khankrua, T. Pongpanit, P. Paneetjit, R. Boonmark, M. Seadan, and S. Suttiruengwong, “Development of PLA/EVA reactive blends for heat-shrinkable film,” Polymers, vol. 11, p. 1925, 2019, doi: 10.3390/polym11121925.

R. Peña-Alonso, F. Rubio, J. Rubio, and J. L. Oteo, “Study of the hydrolysis and condensation of γ-aminopropyltriethoxysilane by FT-IR spectroscopy,” Journal of Materials Science, vol. 42, pp. 595–603, 2007, doi: 10.1007/s10853-006- 1138-9.

E. W. Fischer, H. J. Sterzel, and G. Wegner, “Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions,” Kolloid-Zeitschrift und Zeitschrift für Polymere, vol. 251, pp. 980–990, 1973, doi: 10.1007/BF01498927.

M. Rahmar, I. Ghasemi, M. Karrabi, H. Azizi, M. Zandi, and M. Riahnezhad, “Silane crosslinking of poly(lactic acid): The effect of simultaneous hydrolytic degradation,” Express Polymer Letters, vol. 9, pp. 1133–1141, 2015, doi: 10.3144/ expresspolymlett.2015.101.

W. Hoogsteen, A. R. Postema, A. J. Pennings, G. ten Brinke, and P. Zugenmaier, “Crystal structure, conformation and morphology of solution-spun poly(L-lactide) fibers,” Macromolecules, vol. 23, pp. 634–642, 1990, doi: 10.1021/ma00204a041.

J. Kobayashi, T. Asahi, M. Ichiki, A. Oikawa, H. Suzuki, T. Watanabe, E. Fukuda, and Y. Shikinami, “Structural and optical properties of poly lactic acids,” Journal of Applied Physics, vol. 77, pp. 2957–2973, 1995, doi: 10.1063/1.358712.

K. Wasanasuk, K. Tashiro, M. Hanesaka, T. Ohhara, K. Kurihara, R. Kuroki, T. Tamada, T. Ozeki, and T. Kanamoto, “Crystal structure analysis of poly(L-lactic acid) α form on the basis of the 2-dimensional wide-angle synchrotron X-ray and neutron diffraction measurements,” Macromolecules, vol. 44, pp. 6441–6452, 2011, doi: 10.1021/ma2006624.

C. C. Tsai, R. J. Wu, H. Y. Cheng, S. C. Li, Y. Y. Siao, D. C. Kong, and G. W. Jang, “Crystallinity and dimensional stability of biaxial oriented poly(lactic acid) films,” Polymer Degradation and Stability, vol. 95, pp. 1292–1298, 2010, doi: 10.1016/j.polymdegradstab.2010.02.032.

J. Nomai, B. Suksut, and A. K. Schlarb, “Crystallization behavior of poly(lactic acid)/ titanium dioxide nanocomposite,” KMUTNB International Journal of Applied Science and Technology, vol. 8, no. 4, pp. 251–258, 2015, doi: 10.14416/j.ijast.2015.10.003.

R. J. Samuels, “Quantitative structural characterization of the mechanical properties of poly(ethylene terephthalate),” Journal of Polymer Science Part A-2: Polymer Physics, vol. 10, pp. 781–810, 1972, doi: 10.1002/pol.1972.160100502.