Inducing the Skinned-oriented Asymmetrical Nanofiltration Membranes via Controlled Evaporation Times in Dry/Wet Phase Inversion Process

Main Article Content

Nurul Hannan Mohd Safari
Sabariah Rozali
Abdul Rahman Hassan
Roseley Osman


The effect of evaporation time on the fabrication of fine skinned asymmetric polyethersulfone nanofiltration membrane was studied. Nanofiltration experiment and modeling data revealed that the variation of the evaporation time during dry/wet phase inversion process was found to significantly affect the membrane performance and properties. The evaporation times (5 to 25 s) were found to improve the performance and characteristics of the membrane. As good separation performance was achieved, modeling data and morphological analysis discovered that the optimum evaporation time was found to be at 20 s. At these optimal settings, the fabricated membranes demonstrated the finest structural details and morphologies, and the best key properties (rp, Δx/Ak and ζ), which were within the ranges of commercial nanofiltration membranes.

Article Details

How to Cite
Mohd Safari, N. H., Rozali, S., Hassan, A. R., & Osman, R. (2023). Inducing the Skinned-oriented Asymmetrical Nanofiltration Membranes via Controlled Evaporation Times in Dry/Wet Phase Inversion Process. Applied Science and Engineering Progress, 16(2), 6015.
Research Articles


K. F. M. Yunos, N. A. Mazlan, M. N. M. Naim, A. S. Baharuddin, and A. R. Hassan, “Ultrafiltration of palm oil mill effluent: Effects of operational pressure and stirring speed on performance and membranes fouling,” Environmental Engineering Research, vol. 24, pp. 263–270, 2019, doi: 10.4491/EER.2018.175.

M. Mirfendereski and T. Mohammadi, “Investigation of H2S and CO2 removal from gas streams using hollow fiber membrane gas-liquid contactors,” Chemical and Biochemical Engineering Quarterly, vol. 31 pp. 139–144, 2017, doi: 10.15255/CABEQ. 2016.1022.

M. J. Regufe, V. V. Santana, A. F. P. Ferreira, A. M. Ribeiro, J. M. Loureiro, and I. B. R. Nogueira, “A hybrid modeling framework for membrane separation processes: Application to lithium-ion recovery from batteries,” Processes, vol. 9, 2021, Art. no. 1939, doi: 10.3390/pr9111939.

M. Zebić Avdičević, K. Košutić, and S. Dobrović, “Flux decline study of tubular ceramic and flat sheet UF membranes in textile wastewater treatment,” Chemical and Biochemical Engineering Quarterly, vol. 33, pp. 405–415, 2019, doi: 10.15255/CABEQ. 2018.1570.

S. H. Zainal, A. R. Hassan, and M. H. M. Isa, “The effect of polymer concentration and surfactant types on nanofiltration-surfactant membrane for textile wastewater,” Malaysian Journal of Analytical Science, vol. 20, pp. 1524–1529, 2016, doi: 10.17576/mjas-2016-2006-34.

S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin, G. He, D. Peng, S. Chen, Y. Yin, Z. Jiang, and M. D. Guiver, “Advances in high permeability polymerbased membrane materials for CO2 separations,” Energy and Environmental Science, vol. 9, pp. 1863–1890, 2016, doi: 10.1039/c6ee00811a.

N. A. Sulaiman, A. R. Hassan, S. Rozali, N. H. Mohd Safari, C. W. I. C. W. Takwa, A. D. K. Mansoor A, and M. H. M. Saad, “Development of asymmetric low pressure reverse osmosissurfactants membrane: Effect of surfactant types and concentration,” Periodica Polytechnica Chemical Engeering, vol. 64, pp. 296–303, 2020, doi: 10.3311/PPch.13327.

M. A. U. R. Alvi, M. W. Khalid, N. M, Ahmad, M. B. K. Niazi, M. N. Anwar, M. Batool, W. Cheema, and S. Rafiq, “Polymer concentration and solvent variation correlation with the morphology and water filtration analysis of polyether sulfone microfiltration membrane,” Advances in Polymer Technology, vol. 2019, pp. 1–11, 2019, doi: 10.1155/2019/8074626.

N. Aryanti, D. H. Wardhani, and A. Nafiunisa, “Ultrafiltration membrane for degumming of crude palm oil-isopropanol mixture,” Chemical and Biochemical Engineering Quarterly, vol. 32, pp. 325–334, 2018, doi: 10.15255/CABEQ. 2017.1244.

N. S. M. Ali and A. R. Hassan, “The effect of CTAB and SDS surfactant on the morphology and performance of low pressure active reverse osmosis membrane,” Malaysian Journal of Analytical Science, vol. 20, pp. 510–516, 2016, doi: 10.17576/mjas-2016-2003-07.

M. Sadrzadeh and S. Bhattacharjee, “Rational design of phase inversion membranes by tailoring thermodynamics and kinetics of casting solution using polymer additives,” Journal of Membrane Science, vol. 441, pp. 31–44, 2013, doi: 10.1016/j. memsci.2013.04.009.

A. R. Hassan, S. Rozali, N. H. M. Safari, and B. H. Besar, “The roles of polyethersulfone and polyethylene glycol additive on nanofiltration of dyes and membrane morphologies,” Environmental Engineering Research, vol. 23, pp. 316–322, 2018, doi: 10.4491/eer.2018.023.

L. Gao, B. Tang, and P. Wu, “An experimental investigation of evaporation time and the relative humidity on a novel positively charged ultrafiltration membrane via dry-wet phase inversion,” Journal of Membrane Science, vol. 326, pp. 168–177, 2009, doi: 10.1016/j.memsci.2008.09.048.

N. A. Ali, A. R. Hassan, and L. Y. Wong, “Development of novel asymmetric ultra low pressure membranes and a preliminary study for bacteria and pathogen removal applications,” Desalination, vol. 206, pp. 474–484, 2007, doi: 10.1016/j.desal.2006.02.074.

S. Li, Z. Cui, L. Zhang, B. He, and J. Li, “The effect of sulfonated polysulfone on the compatibility and structure of polyethersulfone-based blend membranes,” Journal of Membrane Science, vol. 513, pp. 1–11, 2016, doi: 10.1016/j.memsci. 2016.04.035.

N. I. M. Fadilah and A. R. Hassan, “Preparation, characterization and performance studies of active pvdf ultrafiltration-surfactants membranes containing PVP as additive,” Malaysian Journal of Analytical Sciences, vol. 20, pp. 335–341, 2016.

A. R. Hassan and M. S. A. Munaim, “Fabrication and characterization of integrally skinnedoriented highly selective charged asymmetric low pressure poly(ether sulfone) membranes for nanofiltration,” Journal of Chemical Technology and Biotechnology, vol. 87, pp. 559–569, 2011, doi: 10.1002/jctb.2751.

A. F. Ismail and A. R. Hassan, “Effect of additive contents on the performances and structural properties of asymmetric polyethersulfone (PES) nanofiltration membranes,” Separation and Purification Technology, vol. 55, pp. 98–109, 2007, doi: 10.1016/j.seppur.2006.11.002.

N. H. M. Safari, A. R. Hassan, C. W. I. C. W. Takwa, and S. Rozali, “Deduction of surfactants effect on performance, morphology, thermal and molecular properties of polymeric polyvinylidene fluoride (PVDF) based ultrafiltration membrane,” Periodica Polytechnica Chemical Engineering, vol. 63, pp. 27–35, 2019, doi: 10.3311/PPch.12423.

A. R. Hassan, C. W. I. C. W. Takwa, N. H. M. Safari, S. Rozali, and N. A. Sulaiman, “Characterization on performance, morphologies and molecular properties of dual-surfactants based polyvinylidene fluoride ultrafiltration membranes,” Periodica Polytechnica Chemical Engineering, vol. 64, pp. 320–327, 2020, doi: 10.3311/PPch.13862.

Y. Yurekli, “Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes,” Journal of Hazardous Materials, vol. 309, pp. 53–64, 2016, doi: 10.1016/j.jhazmat.2016.01.064.

K. Hendrix, G. Koeckelberghs, and I. F. J. Vankelecom, “Study of phase inversion parameters for PEEK-based nanofiltration membranes,” Journal of Membrane Science, vol. 452, pp. 241– 252, 2014, doi: 10.1016/j.memsci.2013.10.048.

A. S. M. Ali, E. A. Fadl, M. M. Soliman, and S. H. Kandil, “Optimization of the evaporation step in cellulose acetate membranes preparation by dry–wet phase inversion technique for water desalination applications,” Desalination and Water Treatment, vol. 174, pp. 63–70, 2020, doi: 10.5004/dwt.2020.24862.

Y. Zhang, J. Sunarso, S. Liu, and R. Wang, “Current status and development of membranes for CO2/ CH4 separation: A review,” International Journal of Greenhouse Gas Control, vol. 12, pp. 84–107, 2013, doi: 10.1016/j.ijggc.2012.10.009.

S. C, Pesek and W. J. Koros, “Aqueous quenched asymmetric polysulphone hollow fibers prepared by dry/wet phase separation,” Journal of Membrane Science, vol. 88, pp. 1–19, 1994, doi: 10.1016/ 0376-7388(93)E0150-I.

S. Hao, J. Wen, S. Li, J. Wang, and Z. Jia, “Preparation of COF-LZU1/PAN membranes by an evaporation/casting method for separation of dyes,” Journal of Materials Science, vol. 55, pp. 14817–14828, 2020, doi: 10.1007/s10853- 020-05090-8.

W. N. R. Jami’an, H. Hasbullah, F. Mohamed, N. Yusof, N. Ibrahim, and R. R. Ali, “Effect of evaporation time on cellulose acetate membrane for gas separation,” in IOP Conference Series: Earth and Environmental Science, 2016, vol. 36, Art. no. 012008.

X. Y. Chen, H. Vinh-Thang, A. A. Ramirez, D. Rodrigue, and S. Kaliaguine, “Membrane gas separation technologies for biogas upgrading,” RSC Advances, vol. 5, pp. 24399–24448, 2015, doi: 10.1039/c5ra00666j.

H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, and B. D. Freeman, “Maximizing the right stuff: The trade-off between membrane permeability and selectivity,” Science, vol. 356, no. 6343, 2017, doi: 10.1126/science.aab0530.

S. Rozali, N. H. M. Safari, A. R. Hassan, M. Ahmad and R. M. Yunus, “Assessment on performance-properties of asymmetric nanofiltration membranes from polyethersulfone/n-methyl- 2-pyrrolidone/water blends with poly(Vinyl pyrrolidone) as additive,” Periodica Polytechnica Chemical Engineering, vol. 1, pp. 54–69, 2022, doi: 10.3311/PPch.18357.

T. Tavangar, M. Karimi, M. Rezakazemi, and K. Raghava, “Textile waste, dyes/inorganic salts separation of cerium oxide-loaded loose nanofiltration polyethersulfone membranes,” Chemical Engineering Journal, vol. 385, 2020, Art. no. 123787, doi: 10.1016/j.cej.2019.123787.

Q. Long, Z. Zhang, G. Qi, Z. Wang, Y. Chen, and Z. Liu, “Fabrication of chitosan nanofiltration Membranes by the film casting strategy for effective removal of dyes/salts in textile wastewater,” ACS Sustainable Chemical and Engineering, vol. 8, pp. 2512–2522, 2020, doi: 10.1021/ acssuschemeng.9b07026.

S. Zinadini, A. A. L. Zinatizadeh, M. Rahimi, and V. Vatanpour, “Magnetic field-augmented coagulation bath during phase inversion for preparation of ZnFe2O4/SiO2/PES nanofiltration membrane: A novel method for flux enhancement and fouling resistance,” Journal of Industrial and Engineering Chemistry, vol. 46, pp. 9–18, 2017, doi: 10.1016/j.jiec.2016.08.005.

D. Guo, Y. Xiao, T. Li, Q. Zhou, L. Shen, R. Li, Y. Xu, and H. Lin, “Fabrication of highperformance composite nanofiltration membranes for dye wastewater treatment: mussel-inspired layerby- layer self-assembly,” Journal of Colloid and Interface Science, vol. 560, pp. 273–283, 2020, doi: 10.1016/j.jcis.2019.10.078.

J. Wu, M. Xia, Z. Li, L. Shen, R. Li, M. Zhang, Y. Jiao, Y. Xu, and H. Lin, “Facile preparation of polyvinylidene fluoride substrate supported thin film composite polyamide nanofiltration: Effect of substrate pore size,” Journal of Membrane Science, vol. 638, 2021, Art. no. 119699, doi: 10.1016/j.memsci.2021.119699.

J. M. Gohil and R. R. Choudhury, “Introduction to nanostructured and nano-enhanced polymeric membranes: Preparation, function, and application for water purification,” in Nanoscale Materials in Water Purification. Amsterdam, Netherland: Elsevier, 2019, pp. 25–57, doi: 10.1016/B978- 0-12-813926-4.00038-0.

Y. H. See-Toh, F. C. Ferreira, and A. G. Livingston, “The influence of membrane formation parameters on the functional performance of organic solvent nanofiltration membranes,” Journal of Membrane Science, vol. 299, pp. 236–250, 2007, doi: 10.1016/j.memsci.2007.04.047.

A. F. ismail and A. R. Hassan, “Formation and characterization of asymmetric nanofiltration membrane: Effect of shear rate and polymer concentration,” Journal of Membrane Science, vol. 270, pp. 57–72, 2006, doi: 10.1016/j.memsci. 2005.06.046.

S. C. Pesek and W. J. Koros, “Aqueous quenched asymmetric polysulfone membranes prepared by dry/wet phase separation,” Journal of Membrane Science, vol. 81, pp 71–88, 1993, doi: 10.1016/0376-7388(93)85032-R.

V. A. Montesdeoca, A. E. Janssen, R. M. Boom, and A. Van der Padt, “Fine ultrafiltration of concentrated oligosaccharide solutions–Hydration and pore size distribution effects,” Journal of Membrane Science, vol. 580, pp. 161–176, 2019. doi 10.1016/j.memsci.2019.03.019.

Y. Roy and J. H. Lienhard, “On the presence of solute-solvent transport coupling in reverse osmosis,” Journal of Membrane Science, vol. 611, 2020, Art. no. 118272, doi:10.1016/j.memsci. 2020.118272.

M. M. Lorente-Ayza, S. Mestre, M. Menéndez, and E. Sánchez, “Comparison of extruded and pressed low cost ceramic supports for microfiltration membranes,” Journal of the European Ceramic Society, vol. 35, pp. 3681–3691, 2015, doi: doi:10.1016/j.jeurceramsoc.2015.06.010.

A. Pisano, “From tubes and catheters to the basis of hemodynamics: Viscosity and Hagen–Poiseuille equation,” in Physics for Anesthesiologists and Intensivists. Cham, Switzerland: Springer, 2021, pp. 89–98.

D. V. Lebedev, V. S Solodovnichenko, M. M. Simunin, and I. I. Ryzhkov, “Effect of electric field on ion transport in nanoporous membranes with conductive surface,” Petroleum Chemistry, vol. 58, pp. 474–481, 2018, doi: 10.1134/ S0965544118060075.

I. I. Ryzhkov and A. V. Minakov, “Theoretical study of electrolyte transport in nanofiltration membranes with constant surface potential/ charge density,” Journal of Membrane Science, vol. 520, pp. 515–528, 2016, doi: 10.1016/j. memsci.2016.08.004.

E. Wallace, J. Cuhorka, and P. Mikulášek, “Characterization of nanofiltration membrane and its practical use for separation of zinc from wastewater,” Waste Forum, vol. 3, pp. 314–325, 2018.

N. I. M. Fadilah, “Effect of surfactants on pore structure and pore properties of phase inversion ultrafiltration (UF) membrane,” M.S. thesis, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Malaysia, 2015.

S. R. Panda and S. De, “Preparation, characterization and performance of ZnCl2 incorporated polysulfone (PSF)/polyethylene glycol (PEG) blend low pressure nanofiltration membrane,” Desalination, vol. 347, pp. 52–65, 2014, doi:10.1016/j.desal. 2014.05.030.

L. García-Fernández, M. C. García-Payo, and M. Khayet, “Effects of mixed solvents on the structural morphology and membrane distillation performance of PVDF-HFP hollow fiber membranes,” Journal of Membrane Science, vol. 468, pp. 324–338, 2014, doi:10.1016/j. memsci.2014.06.014.

A. K. Hołda, B. Aernouts, W. Saeys, and I. F. Vankelecom, “Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes,” Journal of Membrane Science, vol. 442, pp. 196–205, 2013, doi: 10.1016/j.memsci.2013.04.017.

I. Soroko, M. P. Lopes, and A. Livingston, “The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN): Part A. Effect of polymer/solvent/non-solvent system choice,” Journal of Membrane Science, vol. 381, pp. 152– 162, 2011, doi: 10.1016/j.memsci.2011.07.027.

A. Szymczyk, C. Labbez, P. Fievet, A. Vidonne, A. Foissy, and J. Pagetti “Contribution of convection, diffusion and migration to electrolytes transport through nanofiltration membranes,” Advances in Colloid and Interface Science, vol. 103, pp. 77– 94, 2003 doi: 10.1016/S0001-8686(02)00094-5.

J. Kamcev, D. R. Paul, G. S. Manning, and B. D. Freeman, “Predicting salt permeability coefficients in highly swollen, highly charged ion exchange membranes,” ACS Applied Materials and Interfaces, vol. 9, pp. 4044–4056, 2017, doi: 10.1021/acsami.6b14902.

A. K. Hołda and I. F. J. Vankelecom, “Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes,” Journal of Applied Polymer Science, vol. 132, no. 27, 2015, Art. no. 42130, doi: 10.1002/app.42130.