Investigate the Possibility of Improving the Properties of Aluminum Scrap Powder by adding Graphite Powder

Main Article Content

Prathumrat Nuyang
Kittisak Sangsana
Channarong Monteanthong
Kanokon Nuilek

Abstract

Aluminum scraps are derived from industrial waste in the machining process called turning and are rarely reused. Recycling this wasted aluminum is particularly appealing. The Aluminum powder is made from this industrial waste. This article uses a metallurgical technique to prepare and use scrap recycled aluminum. In this study, the goal was to improve the properties of aluminum scraps by adding graphite powder. This study is based on a powder metallurgical process, where aluminum scraps from the machining processes are converted into fine powder (~60 μm) using a ball mill process. The powder is then mixed into a composite of aluminum powder (Al) and graphite powder (GP) using a high-speed mixing method. The GP added to the Al has a particle matter ratio of 0.25, 0.5, 0.75, and 1.0 percent by weight. The composite powder is then compressed into a test specimen and sent for sintering. The study aims to look at the mechanical and electrical properties after the introduction of graphite powder. In ideal circumstances, the study showed an increase in ultimate tensile strength (UTS), young’s modulus (E), hardness, and electrical conductivity of composite in comparison with pure aluminum, with a UTS value of 140.32 MPa up from 131.05 MPa, an E value of 49.78 GPa up from 41.48 GPa and a hardness value of 91.88 HV up from 64.69 HV.

Article Details

How to Cite
Nuyang, P., Sangsana, K., Monteanthong, C., & Nuilek, K. (2024). Investigate the Possibility of Improving the Properties of Aluminum Scrap Powder by adding Graphite Powder. Applied Science and Engineering Progress, 17(1), 6842. https://doi.org/10.14416/j.asep.2023.04.004
Section
Research Articles

References

Z. M. Gasem, “Fatigue crack growth behavior in powder-metallurgy 6061 aluminum alloy reinforced with submicron Al2O3 particulates,” Composites Part B Engineering, vol. 43, no. 8, pp. 3020–3025, Jun. 2012, doi: 10.1016/j. compositesb.2012.05.031.

L. Dyachkova and E. E. Feldshtein, “On the properties of composites based on sintered bronze with alumina additives,” Compososites Part B Engineering, vol. 45, no. 1, pp. 239–247, Jul. 2012, doi: 10.1016/j.compositesb.2012.07.024.

N. Chawla and K. K. Chawla, Metal Matrix Composites, 2nd ed. New York: Springer, 2006, pp.1–4.

W. D. Callister, Jr., D. G. Rethwisch, Materials Science and Engineering - An Introduction, 10th ed. New Jersey:Wiley, 2018, pp. 589–590.

R. Etemadi, B. Wang, K. M. Pillai, B. Niroumand, E. Omrani, and P. Rohatgi, “Pressure infiltration processes to synthesize metal matrix composites– A review of metal matrix composites, the technology and process simulation,” Materials Manufacturing Process, vol. 33, no. 12, pp. 1261– 1290, Feb. 2018, doi: 10.1080/10426914. 2017.1328122.

A. Mortensen and J. Llorca, “Metal matrix composites,” The Annual Review of Materials Research, vol. 40, pp. 243–270, Mar. 2010, doi: 10.1146/annurev-matsci-070909-104511.

C. Prakash, S. Singh, S. Sharma, H. Garg, J. Singh, H. Kumar, and G. Singh, “Fabrication of aluminium carbon nano tube silicon carbide particles based hybrid nano-composite by spark plasma sintering,” Materials Today: Proceeding, vol. 21, pp. 1637–1642, 2020, doi: 10.1016/j. matpr.2019.11.273.

M. A. Awotunde, A. O. Adegbenjo, B. A. Obadele, M. Okoro, B. M. Shongwe, and P. A. Olubambi, “Influence of sintering methods on the mechanical properties of aluminium nanocomposites reinforced with carbonaceous compounds: A review,” Journal of Materials Research and Technology, vol. 8, no. 2, pp. 2432–2449, Apr. 2019, doi: 10.1016/j.jmrt.2019.01.026.

M. Bastwros, G.-Y. Kim, C. Zhu, K. Zhang, S. Wang, X. Tang, and X. Wang, “Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering,” Composites Part B: Engineering, vol. 60, pp. 111–118, Apr. 2014, doi: 10.1016/j.compositesb.2013.12.043.

E. Yandria, P. Pramudito, R. Ronald, Y. Ardiani, R. Ariatia, R. H. Setyobudia, W. Widodo, M. Zahoor, I. Zekker, and A. Lomi, “Technical design of aluminium scrap processing machines by utilizing direct exhaust air using conveyor drying system,” Proceedings of the Estonian Academy of Sciences, vol. 71, no. 2, pp. 178–185, May 2022, doi: 10.3176/proc.2022.2.01.

A. T. Tabereaux and R. D. Peterson, Aluminum Production. Amsterdam, Netherlands: Elsevier, 2014.

M. Samuel, “A new technique for recycling aluminium scrap,” Journal of Materials Processing Technology, vol. 135, no. 1, pp. 117–124, Apr. 2003, doi: 10.1016/S0924-0136(02)01133-0.

V. Kučera, F. Průša, and D. Vojtěch, “Processing of Al-Fe scraps by powder metallurgy,” Manufacturing Technology, vol. 16, no. 4, pp. 726–732, Aug. 2016, doi: 10.21062/UJEP/ X.2016/A/1213-2489/MT/16/4/726.

D. A. Saheb, “Aluminum silicon carbide and aluminum graphite particulate composites,” Journal of Engineering and Applied Science, vol. 6, no. 10, pp. 41–46, Oct. 2011.

M. Nagaral, B. K. Shivananda, Jayachandran, V. Auradi, and S. A. Kori, “Effect of SiC and graphite particulates addition on wear behaviour of Al2219 alloy hybrid composites,” IOP Conference Series: Materials Science and Engineering, vol. 149, no. 1, Art. no. 012108, 2016, doi: 10.1088/1757-899X/149/1/012108.

A. Ureña, J. Rams, M. D. Escalera, and M. Sánchez, “Characterization of interfacial mechanical properties in carbon fiber/aluminium matrix composites by the nanoindentation technique,” Composites Science and Technology, vol. 65, no. 13, pp. 2025–2038, Jun. 2005, doi: 10.1016/j.compscitech.2005.04.013.

P. Garg, A. Jamwal, D. Kumar, K. K. Sadasivuni, C. M. Hussain, and P. Gupta, “Advance research progresses in aluminium matrix composites: Manufacturing & applications,” Journal of Materials Research and Technology, vol. 8, no. 5, pp. 4924–4939, Jul. 2019, doi: 10.1016/j. jmrt.2019.06.028.

H. Faleh, N. Muna, and F. Ştefănescu, “Properties and applications of aluminium-graphite composites,” Advanced Materials Research, vol. 1128, pp. 134–143, Oct. 2015, doi: 10.4028/ www.scientific.net/amr.1128.134.

Standard practices for production and preparation of powder metallurgy (PM) test specimens, ASTM B925-08, 2014.

Standard test method for resistivity of electrical conductor materials, Astm B193-89, 1990.

Standard test methods for tension testing of metallic materials 1, ASTM E8/E8M, 2010.

Standard test methods for notched bar impact testing of metallic materials, ASTM E 23-12c, 2012.

Standard Test Method for Microindentation Hardness of Powder Metallurgy (PM) Materials, ASTM B933-14, 2014.

M. Rashad, F. Pan, A. Tang, and M. Asif, “Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method,” Progress in Natural Science: Materials International, vol. 24, no. 2, pp. 101–108, Apr. 2014, doi: 10.1016/j.pnsc. 2014.03.012.

L. Wu, Z. Yu, C. Liu, Y. Ma, Y. Huang, T. Wang, L. Yang, H. Yan, and W. Liu, “Microstructure and tensile properties of aluminum powder metallurgy alloy prepared by a novel low-pressure sintering,” Journal of Materials Research and Technology, vol. 14, pp. 1419–1429, Jul. 2021, doi: 10.1016/j.jmrt.2021.07.074.

H.-M. Xia, L. Zhang, Y.-C. Zhu, N. Li, Y.-Q. Sun, J.-D. Zhang, and H.-Z. Ma, “Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering,” International Journal of Minerals, Metallurgy and Materials, vol. 27, no. 9, pp. 1295–1300, Feb. 2020, doi: 10.1007/ s12613-020-2009-0.

M. Rahimian, N. Ehsani, N. Parvin, and H. R. Baharvandi, “The effect of sintering temperature and the amount of reinforcement on the properties of Al-Al2O3 composite,” Materials & Design, vol. 30, no. 8, pp. 3333–3337, Dec. 2008, doi: 10.1016/j.matdes.2008.11.027.

H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, “Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites,” Carbon, vol. 47, no. 3, pp. 570–577, Nov. 2008, doi: 10.1016/j.carbon.2008.10.041.

J. M. Montes, J. A. Rodríguez, and E. J. Herrera, “Thermal and electrical conductivities of sintered powder compacts,” Powder Metallurgy, vol. 46, no. 3, pp. 251–256, Sep. 2003, doi: 10.1179/003258903225008544.