The Kinetic Study of Dampit Robusta Coffee Caffeine Degradation by Saccharomyces cerevisiae

Main Article Content

Aji Hendra Sarosa
Vivi Nurhadianty
Nurul Huda Fauzan Naufal Dian
Fitri Nur Anita
Alief Fitri Noerdinna
Shalsa Dilla Ainur Rizqy

Abstract

About 2–2.8% of robusta coffee contains caffeine. The maximum caffeine content in coffee should be between 0.45–2% according to the standard. Consequently, the fermentation process is required to lower the caffeine content in robusta coffee. Saccharomyces cerevisiae produces enzymes during fermentation process that can break down caffeine into uric acid, 7-methylxanthine, and xanthine. In this study, simulation is used to obtain data on fermentation’s kinetics. The goal of this study is to determine the effect of Dampit robusta coffee fermentation using S. cerevisiae on the caffeine level in coffee beans and to simulate the fermentation process using the Monod equation. This study employs two techniques: laboratory-scale investigation and simulation of fermentation kinetics. Ultraviolet-visible spectrophotometry is used to analyze the caffeine content. The caffeine-level data is used in fermentation kinetic simulation using microsoft Excel software. Simulation data is validated using the coefficient of determination (R2) on the regression results and the least significant difference method. Caffeine-level data is tested with 24, 36, 48, 60, and 72 h as the fermentation time variables. The study’s findings indicate that fermentation using S. cerevisiae can reduce caffeine content to 15.0063 mg/g. Simulation of robusta coffee fermentation using the Monod equation yields the valid values of reaction rate constant (k) and Monod constant (CM) as −0.01047 and −24.978, respectively. Monod fermentation is suitable for simulating the fermentation of Dampit robusta coffee using S. cerevisiae with a fermentation time of 24–60 h.

Article Details

How to Cite
Sarosa, A. H., Nurhadianty, V., Naufal Dian, N. H. F., Anita, F. N., Noerdinna, A. F., & Ainur Rizqy, S. D. (2024). The Kinetic Study of Dampit Robusta Coffee Caffeine Degradation by Saccharomyces cerevisiae. Applied Science and Engineering Progress, 17(1), 6891. https://doi.org/10.14416/j.asep.2023.07.004
Section
Research Articles

References

J. J. Barone and H. R. Roberts, “Caffeine consumption,” Food and Chemical Toxicology, vol. 34, no. 1, 1996, doi: 10.1016/0278-6915 (95)00093-3.

C. M. Galanakis, Handbook of Coffee Processing By-Products: Sustainable Applications. Amsterdam. Netherlands: Elsevier, 2017.

S. Casal, M. B. Oliveira, and M. A. Ferreira, “HPLC/diode-array applied to the thermal degradation of trigonelline, nicotinic acid and caffeine in coffee,” Food Chemistry, vol. 68, no. 4, 2000, doi: 10.1016/S0308-8146(99)00228-9.

G. P. Fox, A. Wu, L. Yiran, and L. Force, “Variation in caffeine concentration in single coffee beans,” Journal of Agricultural and Food Chemistry, vol. 61, no. 45, 2013, doi: 10.1021/jf4011388.

B. A. Weinberg and R. S. Ekawati, The Miracle of Caffeine: Manfaat Tak Terduga Kafein Berdasarkan Penelitian Paling Mutakhir. Bandung: Qanita, 2010.

K. Walter, “Caffeine and Health,” JAMA, vol. 327, no. 7, 2022, doi: 10.1001/jama.2021.21452.

J. L. Temple, C. Bernard, S. E. Lipshultz, J. D. Czachor, J. A. Westphal, and M. A. Mestre, “The safety of ingested caffeine: A comprehensive review,” Frontiers in Psychiatry, vol. 8, 2017, doi: 10.3389/fpsyt.2017.00080.

R. M. van Dam, F. B. Hu, and W. C. Willett, “Coffee, caffeine, and health,” New England Journal of Medicine, vol. 383, no. 4, 2020, doi: 10.1056/nejmra1816604.

L. M. Claudia, “Analisis Kadar Kafein dalam Biji Kopi Robusta (Coffea canephora) Di Kecamatan Dampit Kabupaten Malang Berdasarkan Tiga Profil Sangrai (Terang, Cokelat, Gelap) dengan Metode Spektrofotometri UV-Visible,” 2019. [Online]. Available: http://repository.ub.ac.id/id/ eprint/175434

P. Mazzafera, “Degradation of caffeine by microorganisms and potential use of decaffeinated coffee husk and pulp in animal feeding,” Scientia Agricola, vol. 59, no. 4, 2002, doi: 10.1590/ s0103-90162002000400030.

F. D. Oktadina, B. D. Argo, and M. B. Hermanto, “Pemanfaatan Nanas (Ananas Comosus L. Merr) untuk Penurunan Kadar Kafein dan Perbaikan Citarasa Kopi (Coffea Sp) dalam Pembuatan Kopi Bubuk,” Jurnal Keteknikan Pertanian Tropis dan Biosistem, vol. 1, no. 3, pp. 265–273, 2013.

N. Faizah, E. Noor, and A. Meryandini, “Pengaruh Konsentrasi Inokulum pada Fermentasi Kopi Menggunakan Bakteri Proteolitik, Selulolitik, dan Xilanolitik,” Bogor, 2014. [Online]. Available: http://repository.ipb.ac.id/handle/ 123456789/68734

E. Joelianto, M. G. S. Partono, and J. H. Hariadi, “Pemodelan dan optimasi parameter dengan algoritma genetik model pertumbuhan saccharomyces cerevisiae dalam bioreaktor umpan curah,” in Prosiding Seminar Teknik Kimia Soehadi Reksowardojo 2002. Bandung: Institut Teknologi Bandung, 2019.

A. Garnier and B. Gaillet, “Analytical solution of Luedeking-Piret equation for a batch fermentation obeying Monod growth kinetics,” Biotechnology and Bioengineering, vol. 112, no. 12, 2015, doi: 10.1002/bit.25669.

H. Zentou, Z. Z. Abidin, R. Yunus, D. R. A. Biak, M. Zouanti, and A. Hassani, “Modelling of molasses fermentation for bioethanol production: A comparative investigation of monod and andrews models accuracy assessment,” Biomolecules, vol. 9, no. 8, 2019, doi: 10.3390/ biom9080308.

K. V. Miller and D. E. Block, “A review of wine fermentation process modeling,” Journal of Food Engineering, vol. 273, 2020, doi: 10.1016/j. jfoodeng.2019.109783.

R. T. J. Morris and S. Steiman, Coffee: A Comprehensive Guide to the Bean, the Beverage, and the Industry, 2nd ed. Lanham, Maryland: Rowman & Littlefield, 2013.

S. A. Bhawani, S. S. Fong, and M. N. M. Ibrahim, “Spectrophotometric Analysis of Caffeine,” International Journal of Analytical Chemistry, vol. 2015. 2015, doi: 10.1155/2015/170239.

T. H. Tjay and K. Rahardja, “Obat-Obat Penting Khasiat,” Penggunaan dan Efek-Efek Sampingnya, 7th ed. Jakarta: Elex Media Komputindo, 2015.

O. Levenspiel, Chemical Reaction Engineering, 3rd ed. New York: Wiley, 1998.

R. Wang, J. Sun, B. Lassabliere, B. Yu, and S. Q. Liu, “Biotransformation of green tea (Camellia sinensis) by wine yeast Saccharomyces cerevisiae,” Journal of Food Science, vol. 85, no. 2, 2020, doi: 10.1111/1750-3841.15026.

C. L. Cheng, Shalabh, and G. Garg, “Coefficient of determination for multiple measurement error models,” Journal of Multivariate Analysis, vol. 126, 2014, doi: 10.1016/j.jmva.2014.01.006.

G. A. Spiller, Caffeine. Boca Raton: CRC Press, 2020, doi: 10.1201/9780429126789.

S. Saripah, A. F. Aini, R. Manfaati, and T. Hariyadi, “Pengaruh Suhu Lingkungan dan Waktu Fermentasi Biji Kopi Arabika Terhadap Kadar Kafein, Etanol, dan pH,” 2021. [Online]. Available: https://jurnal.polban.ac.id/ojs-3.1.2/ proceeding/article/view/2673

P. F. Stanbury, A. Whitaker, and S. J. Hall, Principles of Fermentation Technology, 3rd ed. Oxford, UK: Butterworth-Heinemann, 2016.

I. K. Olivares-Marin, J. C. González-Hernández, C. Regalado-Gonzalez, and L. A. Madrigal-Perez, “Saccharomyces cerevisiae Exponential Growth Kinetics in Batch Culture to Analyze Respiratory and Fermentative Metabolism,” Journal of Visualized Experiments: JoVE, no. 139, Sep. 2018, doi: 10.3791/58192.

L. G. M. Boender, E. A. F. de Hulster, A. J. A. van Maris, P. A. S. Daran-Lapujade, and J. T. Pronk, “Quantitative physiology of Saccharomyces cerevisiae at near-zero specific growth rates,” Applied and Environmental Microbiology, vol. 75, no. 17, pp. 5607–5614, Sep. 2009, doi: 10.1128/ AEM.00429-09.

D. C. Mongomery, Montgomery: Design and Analysis of Experiments. New York: John Willy & Sons, 2017.

A. Tsipa, M. Koutinas, C. Usaku, and A. Mantalaris, “Optimal bioprocess design through a gene regulatory network - Growth kinetic hybrid model: Towards replacing Monod kinetics,” Metabolic Engineering, vol. 48, pp. 129–137, Jul. 2018, doi: 10.1016/j.ymben.2018.04.023.

B. M. I. Ongirwalu, “Kurva pertumbuhan Saccharomyces cerevisiae dari PG-PS Madukismo Yogyakarta yang berperan dalam proses fermentasi alkohol,” Universitas Sanata Dharma, Yogyakarta, 2009.

M. McKeague, Y.-H. Wang, A. Cravens, M. N. Win, and C. D. Smolke, “Engineering a microbial platform for de novo biosynthesis of diverse methylxanthines,” Metabolic Engineering, vol. 38, pp. 191–203, Nov. 2016, doi: 10.1016/j.ymben. 2016.08.003.

K. Hepburn, and O. Levenspiel, Chemical Reaction Engineering, vol. 19, 3rd ed. New York: Wiley 1999.

M. S. M. Sarip, N. A. Morad, N. A. Mohamad Ali, Y. A. Mohd Yusof, and M. A. C. Yunus, “The kinetics of extraction of the medicinal ginger bioactive compounds using hot compressed water,” Separation and Purification Technology, vol. 124, 2014, doi: 10.1016/j.seppur.2014.01.008.