Research Progress and Future Expectations in Anode of Secondary Zinc-Air Batteries: A Review
Main Article Content
Abstract
Zinc-air batteries have attracted widespread attention due to their advantages, including high safety, high theoretical energy density (1086 W·h/kg), low cost, etc. A zinc-air battery primarily consists of a metal anode, electrolyte, and air cathode. However, the anode, as the core component of zinc-air batteries, faces various challenges at the present stage, such as dendritic growth, anode deformation, surface passivation, hydrogen evolution corrosion, etc. These challenges limit the development of secondary zinc-air batteries. To address the challenges faced by the anode, researchers are committed to developing anode materials with long cycle life and high capacity. However, this is achieved through methods like alloying, surface coating, 3D structures, surface modification, and the addition of additives. Therefore, this article provides a comprehensive review of recent breakthroughs and progress in the research on zinc-based battery anodes in recent years. Furthermore, it offers a certain outlook on the future development direction of secondary zinc-air batteries.
Article Details
References
L. Liu, Z. Wang, H. Zhang, and Y. Xue, “Solar energy development in China-A review,” Renewable and Sustainable Energy Reviews, vol. 14, no. 1, 301–311, Jan. 2010.
Y. Huang, Y. Wang, C. Tang, J. Wang, Q. Zhang, Y. Wang, and J. Zhang, “Atomic Modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries,” Advanced Materials, vol. 31, no. 13, 2019, Art. no. 1803800.
P. Sapkota and H. Kim, “Zinc-air fuel cell, a potential candidate for alternative energy,” Journal of Industrial and Engineering Chemistry, vol. 15, no. 4, 445–450, Jul. 2009.
F. M. Guangul and G. T. Chala, “A comparative study between the seven types of fuel cells,” Applied Science and Engineering Progress, vol. 13, no. 3, pp. 185–194, Apr. 2020, doi: 10.14416/j.asep.2020.04.007.
A. Martsri, N. Yodpijit, M. Jongprasithporn, and S. Junsupasen, “Energy, economic, and environmental (3E) analysis for sustainable development: A case study of a 9.9 MW biomass power plant in Thailand,” Applied Science and Engineering Progress, vol. 14, no. 3, pp. 378–386, 2020, doi: 10.14416/j.asep.2020.07.002.
J. Mitali, S. Dhinakaran, and A. A. Mohamad, “Energy storage systems: A review,” Energy Storage and Saving, vol. 1, no. 3, pp. 166–216, Sep. 2022, doi: 10.1016/j.enss.2022.07.002.
A. Z. A. Shaqsi, K. Sopian, and A. Al-Hinai, “Review of energy storage services, applications, limitations, and benefits,” Energy Reports, vol. 6, pp. 288–306, Dec. 2020, doi: 10.1016/j.egyr. 2020.07.028.
X. Min, G. Xu, B. Xie, P. Guan, M. Sun, and G. Cui, “Challenges of prelithiation strategies for next generation high energy lithium-ion batteries,” Energy Storage Materials, vol. 47, pp. 297–318, May 2022, doi: 10.1016/j.ensm.2022. 02.005.
S. Agnew and P. Dargusch, “Effect of residential solar and storage on centralized electricity supply systems,” Nature Clim Change, vol. 5, no. 4, pp. 315–318, Apr. 2015, doi: 10.1038/nclimate2523.
T. Kim, W. Song, D.-Y. Son, L. K. Ono, and Y. Qi, “Lithium-ion batteries: outlook on present, future, and hybridized technologies,” Journal of Materials Chemistry A, vol. 7, no. 7, pp. 2942– 2964, Feb. 2019, doi: 10.1039/C8TA10513H.
M. Armand and J.-M. Tarascon, “Building better batteries,” Nature, vol. 451, pp. 652–657, Feb. 2008, doi: 10.1038/451652a.
F. Zhao, J. Xue, W. Shao, H. Yu, W. Huang, and J. Xiao, “Toward high-sulfur-content, high-performance lithium-sulfur batteries: Review of materials and technologies,” Journal of Energy Chemistry, vol. 80, pp. 625–657, May 2023, doi: 10.1016/j.jechem.2023.02.009.
V. Soundharrajan, B. Sambandam, S. Kim, V. Mathew, J. Jo, S. Kim, J. Lee, S. Islam, K. Kim, Y.-K. Sun, and J. Kim, “Aqueous magnesium zinc hybrid battery: An advanced high-voltage and high-energy MgMn2O4 cathode,” ACS Energy Letters, vol. 3, no. 8, pp. 1998–2004, Aug. 2018, doi: 10.1021/acsenergylett.8b01105.
G. Fang, C. Zhu, M. Chen, J. Zhou, B. Tang, X. Cao, X. Zheng, A. Pan, and S. Liang, “Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery,” Advanced Functional Materials, vol. 29, no. 15, Apr. 2019, Art. no. 1808375, doi: 10.1002/adfm.201808375.
A. Kraytsberg and Y. Ein-Eli, “Review on Li-air batteries-opportunities, limitations, and perspective,” Journal of Power Sources, vol. 196, no. 3, pp. 886–893, Feb. 2011, doi: 10.1016/j.jpowsour.2010.09.031.
Z. Khan, M. Vagin, and X. Crispin, “Can hybrid Na–air batteries outperform nonaqueous Na-O2 batteries?,” Advanced Science, vol. 7, no. 5, 2020, Art. no. 1902866, doi: 10.1002/advs.201902866.
L. Qin, N. Xiao, S. Zhang, X. Chen, and Y. Wu, “From K-O2 to K-Air batteries: Realizing superoxide batteries on the basis of dry ambient air,”Angewandte Chemie International Edition, vol. 59, no. 26, pp. 10498–10501, 2020, doi: 10.1002/anie.202003481.
P. Chen, K. Zhang, D. Tang, W. Liu, F. Meng, Q. Huang, and J. Liu, “Recent progress in electrolytes for Zn–Air batteries,” Frontiers in Chemistry, vol. 8, p. 372, 2020, doi: 10.3389/ fchem.2020.00372.
P. Jiang, D. Li, R. Hou, H. Yang, J. Yang, S. Zhu, L. Wang, and S. Guan, “A micro-alloyed Mg-Zn- Ge alloy as promising anode for primary Mg-air batteries,” Journal of Magnesium and Alloys, 2023, doi: 10.1016/j.jma.2023.05.004.
M. Wei, K. Wang, Y. Zuo, J. Liu, P. Zhang, P. Pei, S. Zhao, Y. Li, and J. Chen, “A high-performance Al-air fuel cell using a mesh-encapsulated anode via Al–Zn energy transfer,” iScience, vol. 24, no. 11, 2021, doi: 10.1016/j.isci.2021.103259.
B. Qian, Y. Zhang, X. Hou, D. Bu, K. Zhang, Y. Lan, Y. Li, S. Li, T. Ma, and X.-M. Song, “A dual photoelectrode photoassisted Fe–Air battery: The photo-electrocatalysis mechanism accounting for the improved oxygen evolution reaction and oxygen reduction reaction of air electrodes,” Small, vol. 18, no. 7, 2022, Art. no. 2103933, doi: 10.1002/smll.202103933.
Md. A. Rahman, X. Wang, and C. Wen, “High energy density metal-air batteries: A review,” Journal of The Electrochemical Society, vol. 160, no. 10, pp. A1759–A1771, 2013, doi: 10.1149/2.062310jes.
D. Ahuja, V. Kalpna, and P. K. Varshney, “Metal air battery: A sustainable and low-cost material for energy storage,” Journal of Physics: Conference Series, vol. 1913, no. 1, May 2021, Art. no. 012065, doi: 10.1088/1742- 6596/1913/1/012065.
T. Zhang, N. Imanishi, Y. Shimonishi, A. Hirano, Y. Takeda, O. Yamamoto, and N. Sammes, “A novel high energy density rechargeable lithium/ air battery,” Chemical Communications, vol. 46, no. 10, pp. 1661–1663, 2010, doi: 10.1039/ B920012F.
V. Caramia and B. Bozzini, “Materials science aspects of zinc-air batteries: A review,” Materials for Renewable and Sustainable Energy, vol. 3, no. 2, p. 28, Apr. 2014, doi: 10.1007/s40243- 014-0028-3.
X. U. Neng-neng and Q. I. A. O. Jin-li, “Recent Progress in bifunctional catalysts for zinc-air,” Journal of Electrochemistry, vol. 26, no. 4, pp. 531–562, 2020.
J. R. Goldstein and B. Koretz, “Tests of a full-sized mechanically rechargeable zinc-air battery in an electric vehicle,” IEEE Aerospace and Electronic Systems Magazine, vol. 8, no. 11, pp. 34–38, Nov. 1993, doi: 10.1109/62.242061.
J. Goldstein, I. Brown, and B. Koretz, “New developments in the Electric Fuel Ltd. zinc/air system,” Journal of Power Sources, vol. 80, no. 1, pp. 171–179, Jul. 1999, doi: 10.1016/ S0378-7753(98)00260-2.
J.-N. Liu, C.-X. Zhao, J. Wang, D. Ren, B.-Q. Li, and Q. Zhang, “A brief history of zinc–air batteries: 140 years of epic adventures,” Energy & Environmental Science, vol. 15, no. 11, pp. 4542–4553, 2022, doi: 10.1039/D2EE02440C.
P. Pei, K. Wang, and Z. Ma, “Technologies for extending zinc–air battery’s cyclelife: A review,” Applied Energy, vol. 128, pp. 315–324, Sep. 2014, doi: 10.1016/j.apenergy.2014.04.095.
N. Kadam and A. Sarkar, “A high voltage zinc– air battery with two isolated electrolytes and moving auxiliary electrodes,” Applied Energy, vol. 344, Aug. 2023, Art. no. 121309, doi: 10.1016/j.apenergy.2023.121309.
K. A. J. Dilshad and M. K. Rabinal, “Rationally designed Zn-Anode and Co3O4-Cathode nanoelectrocatalysts for an efficient Zn-Air battery,” Energy and Fuels, vol. 35, no. 15, pp. 12588–12598, 2021, doi: 10.1021/acs. energyfuels.1c01108.
X. Yuan, C. He, J. Wang, X. You, Y. Chen, Q. Gou, N. Yang, G. Xie, Y. Hou, “Inhibition of zinc dendrite growth in zinc-air batteries by alloying the anode with Ce and Yb,” Journal of Alloys and Compounds, vol. 970, 2024, doi: 10.1016/j.jallcom.2023.172523.
C. Mou, Y. Bai, C. Zhao, G. Wang, Y. Ren, Y. Liu, X. Wu, H. Wang, Y. Sun, “Construction of a self-supported dendrite-free zinc anode for high-performance zinc-air batteries,” Inorganic Chemistry Frontiers, vol. 10, no. 10, pp. 3082– 3090, 2023, doi: 10.1039/d3qi00279a.
C. Sparkes and N. K. Lacey, “A study of mercuric oxide and zinc-air battery life in hearing aids,” The Journal of Laryngology & Otology, vol. 111, no. 9, pp. 814–819, Sep. 1997, doi: 10.1017/ S002221510013871X.
Y. Li, M. Gong, Y. Liang, J. Feng, J.-E. Kim, H. Wang, G. Hong, B. Zhang, and H. Dai, “Advanced zinc-air batteries based on high-performance hybrid electrocatalysts,” Nature Communications, vol. 4, no. 1, May 2013, Art. no. 1805, doi: 10.1038/ncomms2812.
G. W. Heise and E. A. Schumacher, “An air‐depolarized primary cell with caustic alkali electrolyte,” Transactions of The Electrochemical Society, vol. 62, no. 1, p. 383, Jan. 1932, doi: 10.1149/1.3493794.
R. P. Hamlen, E. C. Jerabek, J. C. Ruzzo, and E. G. Siwek, “Anodes for refuelable magnesium‐air batteries,” Journal of the Electrochemical Society, vol. 116, no. 11, p. 1588, Nov. 1969, doi: 10.1149/1.2411622.
J. Zheng, Q. Zhao, T. Tang, J. Yin, C. D. Quilty, G. D. Renderos, X. Liu, Y. Deng, L. Wang, D. C. Bock, C. Jaye, D. Zhang, E. S. Takeuchi, K. J. Takeuchi, A. C. Marschilok, and L. A. Archer, “Reversible epitaxial electrodeposition of metals in battery anodes,” Science, vol. 366, no. 6465, pp. 645–648, Nov. 2019, doi: 10.1126/science. aax6873.
L. Maiche, French Patent 127069, 1878.
J. Kolesar and S. Edward, “Thermoelectric cooling: Review and application. Aeromedical review,” Defense Technical Information Center, Fort Belvoir, VA, 1981.
G. D. Brabson, J. Fannin, L. A. King, and D. W. Seegmiller, “Prototype high-power density aluminum-chlorine battery,” in Electrochemical Society, May 1973, vol. 120, no. 3, Art. no. 7029560.
B. Scrosati, “Lithium rocking chair batteries: An old concept?,” Journal of The Electrochemical Society, vol. 139, no. 10, Oct. 1992, Art. no. 2776, doi: 10.1149/1.2068978.
K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, “LixCoO2 (0 < x < –1): A new cathode material for batteries of high energy density,” Materials Research Bulletin, vol. 15, no. 6, pp. 783–789, Jun. 1980, doi: 10.1016/ 0025-5408(80)90012-4.
A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, “Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries,” Journal of The Electrochemical Society, vol. 144, no. 4, Apr. 1997, Art. no. 1188, doi: 10.1149/1.1837571.
M. M. Thackeray, “Manganese oxides for lithium batteries,” Progress in Solid State Chemistry, vol. 25, no. 1, pp. 1–71, Jan. 1997, doi: 10.1016/ S0079-6786(97)81003-5.
M. Armand, P. Axmann, D. Bresser, M. Copley, K. Edström, C. Ekberg, D. Guyomard, B. Lestriez, P. Novák, M. Petranikova, W. Porcher, S. Trabesinger, M. Wohlfahrt-Mehrens, and H. Zhang, “Lithium-ion batteries – Current state of the art and anticipated developments,” Journal of Power Sources, vol. 479, Dec. 2020, Art. no. 228708, doi: 10.1016/j.jpowsour.2020.228708.
J, Duan, J, Zhao, X, Li, S, Panchal, J, Yuan, R, Fraser, and M, Fowler, “Modeling and analysis of heat dissipation for liquid cooling lithium-ion batteries,” Energies, vol. 14, no. 14, Jul. 2021, Art. no. 4187, doi: 10.3390/en14144187.
H. Tian, P. Qin, K. Li, and Z. Zhao, “A review of the state of health for lithium-ion batteries: Research status and suggestions,” Journal of Cleaner Production, vol. 261, Jul. 2020, Art. no. 120813, doi: 10.1016/j.jclepro.2020.120813.
M. S. H. Lipu, M. A. Hannan, A. Hussain, A. Ayob, M. H. M. Saad, T. F. Karim, and D. N. T. How, “Data-driven state of charge estimation of lithium-ion batteries: Algorithms, implementation factors, limitations and future trends,” Journal of Cleaner Production, vol. 277, Dec. 2020, Art. no. 124110, doi: 10.1016/j.jclepro.2020.124110.
C.-X. Zhao, J.-N. Liu, J. Wang, D. Ren, J. Yu, X. Chen, B.-Q. Li, and Q. Zhang, “A ΔE = 0.63 V bifunctional oxygen electrocatalyst enables high-rate and long-cycling zinc–air batteries,” Advanced Materials, vol. 33, no. 15, 2021, Art. no. 2008606, doi: 10.1002/adma.202008606.
X. Chen, Z. Zhou, H. E. Karahan, Q. Shao, L. Wei, and Y. Chen, “Recent advances in materials and design of electrochemically rechargeable zinc–air batteries,” Small, vol. 14, no. 44, 2018, Art. no. 1801929, doi: 10.1002/smll. 201801929.
J. B. Goodenough and K.-S. Park, “The Li-Ion rechargeable battery: A perspective,” Journal of the American Chemical Society, vol. 135, no. 4, pp. 1167–1176, Jan. 2013, doi: 10.1021/ ja3091438.
J. Pan, Y. Y. Xu, H. Yang, Z. Dong, H. Liu, and B. Y. Xia, “Advanced architectures and relatives of air electrodes in Zn–Air batteries,” Advanced Science, vol. 5, no. 4, 2018, Art. no. 1700691, doi: 10.1002/advs.201700691.
S.-B. Wang, Q. Ran, R.-Q. Yao, H. Shi, Z. Wen, M. Zhao, X.-Y. Lang, and Q. Jiang, “Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries,” Nature Communications, vol. 11, no. 1, Apr. 2020, Art. no. 1634, doi: 10.1038/s41467-020-15478-4.
Y. Li and H. Dai, “Recent advances in zinc–air batteries,” Chemical Society Reviews, vol. 43, no. 15, pp. 5257–5275, 2014, doi: 10.1039/C4CS000 15C.
Q. Ning, L. He, X. Wang, H. Liu, and S. Gao, “Effects of alloying elements on electrochemical performance of zinc-air battery anode,” Journal of Central South University (Science and Technology), vol. 52, no. 10, pp. 3389–3396, 2021, doi: 10.11817/j.issn.1672-7207.2021.10.002.
Y. Peng, C. Lai, M. Zhang, X. Liu, Y. Yin, Y. Li, and Z. Wu, “Zn–Sn alloy anode with repressible dendrite grown and meliorative corrosion resistance for Zn-air battery,” Journal of Power Sources, vol. 526, 2022, Art. no. 231173, doi: 10.1016/j.jpowsour.2022.231173.
J. Yu, F. Chen, Q. Tang, T. T. Gebremariam, J. Wang, X. Gong, and X. Wang, “Ag-modified Cu foams as three-dimensional anodes for rechargeable zinc-air batteries,” ACS Applied Nano Materials, vol. 2, no. 5, pp. 2679–2688, 2019, doi: 10.1021/ acsanm.9b00156.
M. N. Masri and A. A. Mohamad, “Effect of adding carbon black to a porous zinc anode in a zinc-air battery,” Journal of the Electrochemical Society, vol. 160, no. 4, pp. A715–A721, 2013, doi: 10.1149/2.007306jes.
J. Stamm, A. Varzi, A. Latz, and B. Horstmann, “Modeling nucleation and growth of zinc oxide during discharge of primary zinc-air batteries,” Journal of Power Sources, vol. 360, pp. 136–149, 2017, doi: 10.1016/j.jpowsour.2017.05.073.
D. J. Park, W. G. Yang, H. W. Jeong, and K. S. Ryu, “Study of zinc compounds for improving the reversibility of the zinc anode in zinc–air secondary batteries,” Bulletin of the Korean Chemical Society, vol. 38, no. 7, pp. 706–710, 2017, doi: 10.1002/bkcs.11157.
Z. Zhou, Y. Zhang, P. Chen, Y. Wu, H. Yang, H. Ding, Y. Zhang, Z. Wang, X. Du, and N. Liu, “Graphene oxide-modified zinc anode for rechargeable aqueous batteries,” Chemical Engineering Science, vol. 194, pp. 142–147, 2019, doi: 10.1016/j.ces. 2018.06.048.
R. Khezri, K. Jirasattayaporn, A. Abbasi, T. Maiyalagan, A. Mohamad, and S. Kheawhom, “Three-dimensional fibrous iron as anode current collector for rechargeable zinc-air batteries,” Energies, vol. 13, no. 6, Mar. 2020, Art. no. 1429, doi: 10.3390/en13061429.
S. Qu, B. Liu, X. Fan, X. Liu, J. Liu, J. Ding, X. Han, Y. Deng, W. Hu, and C. Zhong, “3D foam anode and hydrogel electrolyte for high-performance and stable flexible zinc–air battery,” ChemistrySelect, vol. 5, no. 27, pp. 8305–8310, 2020, doi: 10.1002/ slct.202002573.
C. Wang, Y. Yuan, J. Chen, D. Li, J. Wu, and K. Zhang, “Femtosecond laser processing structural surfaces of zinc anodes for rechargeable zinc-air battery,” in E3S Web of Conferences, 2021, vol. 261, Art. no. 02078, doi: 10.1051/e3sconf/ 202126102078.
D. Han, S. Wu, S. Zhang, Y. Deng, C. Cui, L. Zhang, Y. Long, H. Li, Y. Tao, Z. Weng, Q.-H. Yang, and F. Kang, “A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems,” Small, vol. 16, no. 29, Jul. 2020, Art. no. e2001736, doi: 10.1002/smll.202001736.
T. Arlt, D. Schröder, U. Krewer, and I. Manke, “In operando monitoring of the state of charge and species distribution in zinc air batteries using X-ray tomography and model-based simulations,” Physical Chemistry Chemical Physics, vol. 16, no. 40, pp. 22273–22280, 2014, doi: 10.1039/ C4CP02878C.
C. W. Lee, S. W. Eom, K. Sathiyanarayanan, and M. S. Yun, “Preliminary comparative studies of zinc and zinc oxide electrodes on corrosion reaction and reversible reaction for zinc/air fuel cells,” Electrochimica Acta, vol. 52, no. 4, pp. 1588–1591, Dec. 2006, doi: 10.1016/j.electacta. 2006.02.063.
J. Fu, R. Liang, G. Liu, A. Yu, Z. Bai, L. Yang, and Z. Chen, “Recent progress in electrically rechargeable zinc–air batteries,” Advanced Materials, vol. 31, no. 31, doi: 10.1002/ adma.201805230, Art. no. 1805230, 2019.
W. Sun, M. Ma, M. Zhu, K. Xu, T. Xu, Y. Zhu, and Y. Qian, “Chemical buffer layer enabled highly reversible Zn anode for deeply discharging and long-life Zn–air battery,” Small, vol. 18, no. 9, 2022, doi: 10.1002/ smll.202106604.
W. M. I. W. Ismail, M. N. Masri, and H. K. Adli, “Study of cassava starch layer on zinc anode by electrochemistry method for zinc-air fuel cell system,” in IOP Conference Series: Earth and Environmental Science, 2020, vol. 596, Art. no. 012004, doi: 10.1088/1755-1315/596/1/012004.