Coaxial Airflow 2D Planar Simulation of Millifluidic Plant-Based Caviar Generator

Main Article Content

Penjit Srinophakun
Anusith Thanapimmetha
Nutchapon Chiarasumran
Maythee Saisriyoot
Kittamet Chuwongbandith
Thongchai Rohitatisha Srinophakun

Abstract

Millifluidic plant-based caviar generator was investigated. Effects of parameters; continuous phase flow rate, dispersed phase flow rate, and dispersed phase aperture diameter on the equivalent diameter, degree of spherical shape, and generation rate in a coaxial airflow alginate droplet generator were examined using a computational fluid dynamics (CFD) simulation program. A 2D planar simulation together with the volume of fluid (VOF) was applied to describe the phenomenon of droplet generation. Results showed that increasing the continuous phase flow rate yielded a decrease in equivalent diameter but an increase in droplet generation rate and an increase in the degree of spherical shape. Increasing the dispersed phase flow rate yielded a decrease in the degree of spherical shape but a significant increase in the droplet generation rate as well as a slight increase in equivalent diameter. Increasing the dispersed phase aperture diameter yielded an increase in equivalent diameter but a decrease in droplet generation rate and degree of spherical shape. Overall, the device could generate from 1,400–9,000 drops per hour with around 2.3–4.0 mm in size.

Article Details

How to Cite
Srinophakun, P., Thanapimmetha, A., Chiarasumran, N., Saisriyoot, M., Chuwongbandith, K., & Srinophakun, T. R. (2024). Coaxial Airflow 2D Planar Simulation of Millifluidic Plant-Based Caviar Generator. Applied Science and Engineering Progress, 17(3), 7358. https://doi.org/10.14416/j.asep.2024.05.002
Section
Research Articles

References

P. Bronzi, H. Rosenthal, and J. Gessner, “Global sturgeon aquaculture production: An overview,” Journal of Applied Ichthyology, vol. 27, no. 2, pp. 169–175, 2011.

M. S. Chebanov, S. B. Podushka, E. I. Rachek, D. Y. Amvrosov, and Y. G. Merkulov, “Hybrids of the Siberian Sturgeon,” in The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 2 – Farming. Cham: Springer, pp. 289–326, 2018.

L. J. Graham and B. R. Murphy, “The decline of the beluga sturgeon: A case study about fisheries management,” Journal of Natural Resources and Life Sciences Education, vol. 36, no. 1, pp. 66–75, 2007.

A. Raposo, H. A. Alturki, R. Alkutbe, and D. Raheem, “Eating Sturgeon: An Endangered Delicacy,” Sustainability, vol. 15, no. 4, p. 3511, 2023.

D. L. Scarnecchia, Y. Lim, L. F. Ryckman, K. M. Backes, S. E. Miller, R. S. Gangl, and B. J. Schmitz, “Virtual population analysis, episodic recruitment, and harvest management of paddlefish with applications to other acipenseriform fishes,” Reviews in Fisheries Science & Aquaculture, vol. 22, no. 1, pp. 16–35, 2014.

M. I. Mityagina, O. Y. Lavrova, and A. G. Kostianoy, “Main pattern of the caspian sea surface oil pollution revealed by satellite data,” Ecologica Montenegrina, vol. 25, pp. 91–105, 2019.

M. A. J. Shaikh, K. S. Alharbi, W. H. Almalki, S. S. Imam, M. Albratty, A. M. Meraya, S. I. Alzarea, I. Kazmi, F. A. Al-Abbasi, O. Afzal, A. S. A. Altamimi, Y. Singh, S. K. Singh, K. Dua, and G. Gupta, “Sodium alginate based drug delivery in management of breast cancer,” Carbohydrate Polymers, vol. 292, 2022, Art. no. 119689.

N. M. Sanchez-Ballester, B. Bataille, and I. Soulairol, “Sodium alginate and alginic acid as pharmaceutical excipients for tablet formulation: Structure-function relationship,” Carbohydrate Polymers, vol. 270, 2021, Art. no. 118399.

M. F. Azhar, M. S. Haris, I. Mohamad, M. N. S. N. Ismadi, A. A. H. A. Yazid, S. R. Rahman, and N. H. M. Azlan, “Optimisation of alginate-pectin bead formulation using central composite design guided electrospray technique,” International Food Research Journal, vol. 28, no. 4, pp. 860–870, 2021.

L. H. Pignolet, A. S. Waldman, L. Schechinger, G. Govindarajoo, J. S. Nowick, and T. Labuza, “The alginate demonstration: Polymers, food science, and ion exchange,” Journal of Chemical Education, vol. 75, no. 11, 1998, doi: 10.1021/ ed075p1430.

S. Patel, N. Scott, K. Patel, V. Mohylyuk, W. J. McAuley, and F. Liu, “Easy to swallow “Instant” jelly formulations for sustained release gliclazide delivery,” Journal of Pharmaceutical Sciences, vol. 109, no. 8, pp. 2474–2484, 2020.

L. P. H. Bastos, J. Vicente, C. H. C. Santos, M. G. Carvalho, and E. E. Garcia-Rojas, “Encapsulation of black pepper (Piper nigrum L.) essential oil with gelatin and sodium alginate by complex coacervation,” Food Hydrocolloids, vol. 102, 2020, Art. no. 105605.

D. Lewińska, J. Bukowski, M. Kożuchowski, A. Kinasiewicz, and A. Weryński, “Electrostatic microencapsulation of living cells,” Biocybernetics and Biomedical Engineering, vol. 28, pp. 69–89, 2008.

H. Watanabea, T. Matsuyama, and H. Yamamoto, “Experimental study on electrostatic atomization of highly viscous liquids,” Journal of Electrostatics, vol. 57, no. 2, pp. 183–197, 2003.

M. Whelehan and I. W. Marison, “Microencapsulation using vibrating technology,” Journal of Microencapsulation, vol. 28, no. 8, pp. 669–688, 2011.

Y. Zhou, S. Kajiyama, H. Masuhara, Y. Hosokawa, T. Kaji, and K. Fukui, “A new size and shape controlling method for producing calcium alginate beads with immobilized proteins,” Journal of Biomedical Science and Engineering, vol. 02, pp. 287–293, 2009.

S. Koch, C. Schwinger, J. Kressler, C. Heinzen, and N. G. Rainov, “Alginate encapsulation of genetically engineered mammalian cells Comparison of production devices, methods and microcapsule characteristics,” Journal of Microencapsulation, vol. 20, no. 3, pp. 303–316, 2003.

L. Martín-Banderas, A. M. Gañán-Calvo, and M. Fernández-Arévalo, “Making drops in microencapsulation processes,” Letters in Drug Design & Discovery, vol. 7, no. 4, pp. 300–309, 2010.

W. J. Aljohani, l. wenchao, M. W. Ullah, X. Zhang, and G. Yang, “Application of sodium alginate hydrogel,” IOSR Journal of Biotechnology and Biochemistry, vol. 03, no. 3, pp. 19–31, 2017.

M. Workamp, S. Alaie, and J. A. Dijksman, “Coaxial air flow device for the production of millimeter-sized spherical hydrogel particles,” Review of Scientific Instruments, vol. 87, no. 12, 2016, Art. no. 125113.

G. V. Theodorakopoulos, F. K. Katsaros, S. K. Papageorgiou, M. Beazi-Katsioti, and G. E. Romanos, “Engineering commercial TiO2 powder into tailored beads for efficient water purification,” Materials (Basel), vol. 15, no. 1, p. 326, 2022.

R. K. Reddy, J. Gupta, and P. Izharuddin, “Alginate microspheres: The innovative approaches to production of the microbeads/ micro-particles,” Journal of Drug Delivery and Therapeutics, vol. 9, no. 4-s, pp. 774–781, 2019.

T. Andersen, P. Auk-Emblem, and M. Dornish, “3D cell culture in alginate hydrogels,” Microarrays (Basel), vol. 4, no. 2, pp. 133–161, 2015.

D. Lee, S. E. Greer, M. A. Kuss, Y. An, and A. T. Dudley, “3D printed alginate bead generator for high-throughput cell culture,” Biomed Microdevices, vol. 23, no. 2, p. 22, 2021.

V. Kunopagarnwong, T. Rohitatisha Srinophakun, T. Sritaweewat, and Y. Chisti, “Design of a stacked-layer tubular photobioreactor for microalgae cultivation,” KMUTNB International Journal of Applied Science and Technology, vol. 8, no. 3, pp. 179–184, 2015.

F. Guo and B. Chen, “Numerical study on taylor bubble formation in a micro-channel T-junction using VOF method,” Microgravity Science and Technology, vol. 21, no. S1, pp. 51–58, 2009.

M. W. Weber and R. Shandas, “Computational fluid dynamics analysis of microbubble formation in microfluidic flow-focusing devices,” Microfluidics and Nanofluidics, vol. 3, no. 2, pp. 195–206, 2006.

F. Mardani, S. Falahatian, and M. Taghipoor, “Mapping flow-focusing microfluidic droplet formation to determine high-throughput droplet generation configurations,” Results in Engineering, vol. 18, 2023, Art. no. 101125.

Ansys Fluent 14.0 Theory Guide, Ansys, Pennsylvania, USA, 2011.

T. Tate, “XXX. On the magnitude of a drop of liquid formed under different circumstances,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 27, no. 181, pp. 176–180, 1864.

W. D. Harkins and F. E. Brown, “The determination of surface tension (free surface energy) and the weight of falling drops: The surface tension of water and benzene by the capillary height method,” Journal of the American Chemical Society, vol. 41, no. 4, pp. 499–524, 1919.

J. Yao, F. Lin, H. S. Kim, and J. Park, “The effect of oil viscosity on droplet generation rate and droplet size in a T-junction microfluidic droplet generator,” Micromachines (Basel), vol. 10, no. 12, p. 808, 2019.

M. Rahimi, A. Shams Khorrami, and P. Rezai, “Effect of device geometry on droplet size in co-axial flow-focusing microfluidic droplet generation devices,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 570, pp. 510–517, 2019.

C. Deng, H. Wang, W. Huang, and S. Cheng, “Numerical and experimental study of oil-in-water (O/W) droplet formation in a co-flowing capillary device,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 533, pp. 1–8, 2017.