Development and Characterization of Hybrid Particulate-fiber Reinforced Epoxy Composites

Main Article Content

Akeem Damilola Akinwekomi
Isiaka Oluwole Oladele
Linus Nnabuike Onuh
Essien Essien Essien
Newton Itua Agbeboh
Musibaudeen Olatunde Idris

Abstract

Although considered wastes, animal fibers and gastropod shell particles are biodegradable, have low density, high stiffness, considerably high impact absorption capacity and relatively low cost. Therefore, they are finding increasing use as reinforcement materials in polymer composites. This research work studied the tensile, hardness, and wear resistance properties of hybrid snail shell (SSP) and chicken feather barb fibers (CFB) reinforced epoxy composites. The stir cast molding technique was utilized to synthesize the composite samples with 3, 6, 9, 12, 15, and 18 wt.% of the hybrid SSPs/CFB. Compared with the control samples, SSP/CFB hybrid reinforcements enhanced the mechanical properties of the composites. Composites with intermediate weight fraction of 9 wt.% SSP/CFB exhibited overall optimum properties when benchmarked against the control sample with approximately 37, 37, 133, 19, and 59% improvement in wear, hardness, impact, and ultimate tensile strength properties respectively. These enhancements suggested a synergistic effect of the two reinforcement phases. The results presented in this study demonstrated the potential of utilizing bio-derived waste materials for synthesizing eco-friendly composites.

Article Details

How to Cite
Akinwekomi, A. D., Oladele, I. O., Onuh, L. N., Essien, E. E., Agbeboh, N. I., & Idris, M. O. (2024). Development and Characterization of Hybrid Particulate-fiber Reinforced Epoxy Composites. Applied Science and Engineering Progress, 17(4), 7391. https://doi.org/10.14416/j.asep.2024.06.001
Section
Research Articles

References

B. Muthu chozha rajan, S. Indran, D. Divya, P. Narayanasamy, A. Khan, A. M. Asiri, and S. Nagarajan, “Mechanical and thermal properties of Chloris barbata flower fiber/epoxy composites: Effect of alkali treatment and fiber weight fraction,” Journal of Natural Fibers, vol. 19, pp. 3453–3466, 2022, doi: 10.1080/15440478.2020.1848703.

J. Rantheesh, S. Indran, S. Raja, and S. Siengchin, “Isolation and characterization of novel micro cellulose from Azadirachta indica A. Juss agro-industrial residual waste oil cake for futuristic applications,” Biomass Conversion and Biorefinery, vol. 1, pp. 1–19, 2022, doi: 10.1007/s13399- 022-03467-0.

R. Jagadeesan, I. Suyambulingam, R. Somasundaram, D. Divakaran, and S. Siengchin, “Isolation and characterization of novel microcellulose from Sesamum indicum agro-industrial residual waste oil cake: Conversion of biowaste to wealth approach,” Biomass Conversion and Biorefinery, vol. 1, pp. 1–15, 2023, doi: 10.1007/s13399-022-03690-9.

V. C. S. Gandhi, I. Jenish, S. Indran, and D. Y. Rajan, “Mechanical and thermal analysis of cissus quadrangularis stem fiber/epoxy composite with micro-red mud filler composite for structural application,” Transactions of the Indian Institute of Metals, vol. 75, pp. 737–747, 2022, doi: 10.1007/S12666-021-02478-1/FIGURES/12.

I. O. Oladele, A. M. Okoro, A. Omotoyinbo, and M. C. Khoathane, “Evaluation of the mechanical properties of chemically modified chicken feather fibres reinforced high density polyethylene composites,” Journal of Taibah University for Science, vol. 12, pp. 56–63, 2018, doi: 10.1080/ 16583655.2018.1451103.

K. L. Pickering, M. G. A. Efendy, and T. M. Le, “A review of recent developments in natural fibre composites and their mechanical performance,” Composites Part A: Applied Science and Manufacturing, vol. 83, pp. 98–112, Apr. 2016, doi: 10.1016/Journalcompositesa.2015.08.038.

I. O. Oladele, “Assessment of thermo-mechanically treated chicken feather fibre reinforced epoxy composites for automobile application,” American Journal of Materials Science and Technology, vol. 5, no. 1, pp. 1–10, 2016, doi: 10.7726/ajmst.2016.1001.

C. Galán-Marín, C. Rivera-Gómez, and J. Petric-Gray, “Effect of animal fibres reinforcement on stabilized earth mechanical properties,” Journal of Biobased Materials and Bioenergy, vol. 4, no. 2, pp. 121–128, 2010, doi: 10.1166/ jbmb.2010.1076.

S. Indran, D. Divya, S. Raja, S. M. Rangappa, and S. Suchart, “Physico-chemical, mechani¬cal and morphological characterization of Furcraea selloa k. koch plant leaf fibers-an exploratory investigation,” Journal of Natural Fibers, vol. 20, no. 1, Dec. 2023, doi: 10.1080/ 15440478.2022.2146829.

V. S. Candido, A. C. R. da Silvaa, N. T. Simonassib, F. S. da Luzb, and S. N. Monteiro, “Toughness of polyester matrix composites reinforced with sugarcane bagasse fibers evaluated by Charpy impact tests,” Journal of Materials Research and Technology, vol. 6, pp. 334–338, 2017, doi: 10.1016/Journaljmrt.2017.06.001.

I. O. Oladele, I. O. Ibrahim, A. D. Akinwekomi, and S. I. Talabi, “Effect of mercerization on the mechanical and thermal response of hybrid bagasse fiber/CaCO3 reinforced polypropylene composites,” Polymer Testing, vol. 76, pp. 192–198, Jul. 2019, doi: 10.1016/j.polymertesting.2019. 03.021.

K. Ramanaiah, A. V. R. Prasad, and K. H. C. Reddy, “Thermal and mechanical properties of waste grass broom fiber-reinforced polyester composites,” Materials Design, vol. 40, pp. 103–108, Sep. 2012, doi: 10.1016/j.matdes.2012.03.034.

S. Husseinsyah, K. Seong Chun, A. Hadi, and R. Ahmad, “Effect of filler loading and coconut oil coupling agent on properties of low-density polyethylene and palm kernel shell eco-composites,” Journal of Vinyl and Additive Technology, vol. 22, no. 3, pp. 200–205, 2016, doi: 10.1002/vnl.21423.

E. Rosamah, Md. S. Hossain, H. P. S. A. Khalil, W. O. W. Nadirah, R. Dungani, A. S. N. Amiranajwa, N. L. M. Suraya, H. M. Fizree, and A. K. M. Omar, “Properties enhancement using oil palm shell nanoparticles of fibers reinforced polyester hybrid composites,” Advanced Composite Materials, vol. 26, no. 3, pp. 259–272, 2017, doi: 10.1080/09243046.2016.1145875.

S. Siddika, F. Mansura, M. Hasan, and A. Hassan, “Effect of reinforcement and chemical treatment of fiber on the properties of jute-coir fiber reinforced hybrid polypropylene composites,” Fibers and Polymers, vol. 15, no. 5, pp. 1023– 1028, 2014, doi: 10.1007/s12221-014-1023-0.

I. O. Oladele, A. D. Akinwekomi, I. O. Ibrahim, M. H. Adegun, and S. I. Talabi, “Assessment of impact energy, wear behavior, thermal resistance and water absorption Properties of hybrid bagasse fiber/CaCO3 reinforced polypropylene composites,” International Polymer Processing, vol. 36, no. 2, pp. 205–212, 2021, doi: 10.1515/ ipp-2020-3984.

M. Uzun, E. Sancak, I. Patel, I. Usta, M. Akalin, and M. Yuksek, “Mechanical behaviour of chicken quills and chicken feather fibres reinforced polymeric composites,” Archives of Materials Science and Engineering, vol. 52, no. 2, pp. 82–86, 2011.

M. M. Rahman, A. Hassan, I. Hossain, M. M. R. Jahangir, E. H. Chowdhury, and R. Parvin, “Current state of poultry waste management practices in Bangladesh, environmental concerns, and future recommendations,” Journal of Advanced Veterinary and Animal Research, vol. 9, no. 3, p. 490, Sep. 2022, doi: 10.5455/ JAVAR.2022.I618.

S. K. Karuppannan, M., Dowlath, G. I. D. Raiyaan, S. Rajadesingu, and K. D. Arunachalam, “Application of poultry industry waste in producing value-added products—A review,” Concepts of Advanced Zero Waste Tools: Present and Emerging Waste Management Practices, pp. 91–121, Jan. 2021, doi: 10.1016/B978-0-12-822183-9.00005-2.

V. Fiore, G. Di Bella, and A. Valenza, “The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites,” Composites Part B: Engineering, vol. 68, pp. 14–21, 2015, doi: 10.1016/j.compositesb. 2014.08.025.

M. Y. Hashim, M. N. Roslan, A. M. Amin, A. Mujahid, and A. Zaidi, “Mercerization treatment parameter effect on natural fibre reinforced polymer matrix composite: A brief review,” World Academy of Science and Engineering Technology, vol. 6, pp. 1382–1388, 2012.

B. O. Baba and U. Özmen, “Preparation and mechanical characterization of chicken feather/ PLA composites,” Polymer Composites, vol. 38, no. 5, pp. 837–845, May 2017, doi: 10.1002/pc.23644.

F. A. Abdullah, “Theoretical and experimental investigations of composite material as thermal insulation,” Al-Qadisiya Journal of Engineering Science, vol. 4, no. 2, pp. 26–36, 2011.

M. Zhan, R. P. Wool, and J. Q. Xiao, “Electrical properties of chicken feather fiber reinforced epoxy composites,” Composites Part A: Applied Science and Manufacturing, vol. 42, no. 3, pp. 229– 233, Mar. 2011, doi: 10.1016/j.compositesa. 2010.11.007.

H. Essabir, M. O. Bensalah, D. Rodrigue, R. Bouhfid, and A. el kacem Qaiss, “A comparison between bio- and mineral calcium carbonate on the properties of polypropylene composites,” Construction and Building Materials, vol. 134, pp. 549–555, 2017, doi: 10.1016/j.conbuildmat. 2016.12.199.

S. Durowaye, G. Lawal, O. Sekunowo, and A. Onwuegbuchulem, “Synthesis and characterization of hybrid polypropylene matrix composites reinforced with carbonized Terminalia catappa shell particles and Turritela communis shell particles,” Journal of Taibah University for Science, vol. 12, no. 1, pp. 79–86, 2018, doi: 10.1080/16583655.2018.1451112.

W. M. Aframehr, B. Molki, P. Heidarian, T. Behzad, M. Sadeghi, and R. Bagheri, “Effect of calcium carbonate nanoparticles on barrier properties and biodegradability of polylactic acid,” Fibers and Polymers, vol. 18, no. 11, pp. 2041– 2048, 2017, doi: 10.1007/s12221-017-6853-0.

Y. Jing, X. Nai, L. Dang, Y. Wang, Y. Dong, and W. Li, “Reinforcing polypropylene with calcium carbonate of different morphologies and polymorphs,” Science and Engineering of Composite Materials, vol. 25, no. 4, pp. 745–751, Jul. 2018, doi: 10.1515/secm-2015-0307.

C. U. Atuanya, V. S. Aigbodion, S. O. Obiorah, M. Kchaou, and R. Elleuch, “Empirical models for estimating the mechanical and morphological properties of recycled low density polyethylene/ snail shell bio-composites,” Journal of Association of Arab University for Basic and Applied Sciences, vol. 21, pp. 45–52, Oct. 2016, doi: 10.1016/J.JAUBAS.2015.01.001.

N. F. Syamimi, M. R. Islam, M. G. Sumdani, and N. M. Rashidi, “Mechanical and thermal properties of snail shell particles-reinforced bisphenol-A bio-composites,” Polymer Bulletin, vol. 77, no. 5, pp. 2573–2589, May 2020, doi: 10.1007/S00289-019-02878-W/FIGURES/7.

O. J. Gbadeyan, S. Adali, G. Bright, B. Sithole, and A. Omojoola, “Studies on the mechanical and absorption properties of achatina fulica snail and eggshells reinforced composite materials,” Composites Structure, vol. 239, May 2020, Art. no. 112043, doi: 10.1016/j.compstruct.2020.112043.

I. O. Oladele, A. A. Adediran, A. D. Akinwekomi, M. H. Adegun, O. O. Olumakinde, and O. O. Daramola, “Development of ecofriendly snail shell particulate-reinforced recycled waste plastic composites for automobile application,” The Scientific World Journal, vol. 2020, pp. 1–8, Jul. 2020, doi: 10.1155/2020/7462758.

E. M. Fernandes, F. Mano, and R. L. Reis, “Hybrid cork-polymer composites containing sisal fibre: Morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction,” Composites Structure, vol. 105, pp. 153–162, 2013, doi: 10.1016/Journal compstruct.2013.05.012.

A. Verma, P. Negi, and V. K. Singh, “Experimental analysis on carbon residuum transformed epoxy resin: Chicken feather fiber hybrid composite,” Polymer Composites, vol. 40, no. 7, pp. 2690– 2699, Jul. 2019, doi: 10.1002/pc.25067.

O. G. Agbabiaka, I. O. Oladele, A. D. Akinwekomi, A. A. Adediran, A. O. Balogun, O. G. Olasunkanmi, and T. M. A. Olayanju, “Effect of calcination temperature on hydroxyapatite developed from waste poultry eggshell,” Scientific African, vol. 8, p. e00452, 2020, doi: 10.1016/jsciaf.2020. e00452.

Standard Test Method for Abrasion Resistance of Organic Coatings by the Taber, ASTM Standard D4060-10, 2010.

Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics, ASTM Standard D 256 – 04, 2004.

I. O. Oladele, A. D. Akinwekomi, O. G. Agbabiaka, and M. O. Oladejo, “Influence of biodegradation on the tensile and wear resistance properties of bio-derived CaCO3/epoxy composites,” Journal of Polymer Research, vol. 26, no. 1, pp. 1–9, 2019, doi: 10.1007/s10965-018-1676-2.

R. Jeyapragash, V. Srinivasan, and S. Sathiyamurthy, “Mechanical properties of natural fiber/particulate reinforced epoxy composites - A review of the literature,” in Materials Today: Proceedings. Amsterdam, Netherlands: Elsevier, 2020, pp. 1223– 1227, doi: 10.1016/j.matpr.2019.12.146.

S. Parbin, N. K. Waghmare, S. K. Singh, and S. Khan, “Mechanical properties of natural fiber reinforced epoxy composites: A review,” Procedia Computer Science, vol. 152, pp. 375–379, 2019, doi: 10.1016/j.procs.2019.05.003.

A. Chafidz, M. Kaavessina, S. Al-Zahrani, and M. N. Al-Otaibi, “Rheological and mechanical properties of polypropylene/calcium carbonate nanocomposites prepared from masterbatch,” Journal of Thermoplastic Composite Materials, vol. 29, no. 5, pp. 593–622, 2016, doi: 10.1177/ 0892705714530747.