Drop-weight Impact Responses of Kenaf Fibre-Reinforced Composite-Metal Laminates: Effect of Chemical Treatment and Fibre Composition
Main Article Content
Abstract
Recently, fiber-metal laminates have gained high attention from material scientists and engineers, particularly when it comes to impact-critical applications. When compared to metallic alloys and composite materials, fiber-metal laminates offer several distinguishing advantages. This work intends to evaluate the low-velocity response of kenaf fiber-reinforced polypropylene metal-composite laminates with various fiber compositions, in line with the current trend of using natural fiber as possible reinforcement in composite materials. In addition, a comparison was made between the low-velocity impact response of non-treated and chemical-treated kenaf fiber-reinforced composite-metal laminates. A hot molding compression technique was employed to fabricate the laminates. Low-velocity impact tests were performed based on ASTM D7136 to determine the peak force, maximum displacement, and energy absorption of the materials. The results confirmed that NaOH treatment and increased fiber content resulted in a higher peak force of NaOH-treated kenaf-based metal laminates. For NaOH-treated laminates, the peak force of laminates with 70 wt% was found to be 11.20% higher than laminates with 50 wt% at the impact energy of 60 J. At fiber content of 70 wt%, the peak force of NaOH-treated laminates is 2.14% greater than that of untreated laminates when subjected to low-velocity impact with an energy level of 60 J. However, laminates with low fiber content and without NaOH treatment manifested higher maximum displacement and energy absorption due to the ductile behavior of such materials.
Article Details
References
T. Sinmazçelik, E. Avcu, M. Ö. Bora, and O. Çoban. “A review: Fibre metal laminates, background, bonding types and applied test methods,” Materials and Design, vol. 32, pp. 3671–3685, Aug. 2011, doi: 10.1016/j.matdes.2011.03.011.
Y. Zhao, R. Alderliesten, Z. Zhou, G. Fang, J. Zhang, and R. Benedictus, “On the physics of applying finite width and geometry correction factors in fatigue crack growth predictions of GLARE,” International Journal of Fatigue, vol. 117, pp. 189–195, Dec. 2018, doi: 10.1016/j.ijfatigue.2018.08.021.
Y, Chen, C. Ji, C. Zhang, F. Wang, and X. Song, “Analysis for post-impact tensile-tensile fatigue damage of 2024-T3 sheets based on tests, digital image correlation (DIC) technique and finite element simulation,” International Journal of Fatigue, vol. 122, pp. 125–140, May 2019, doi: 10.1016/j.ijfatigue.2019.01.010.
E. V. Prasad, C. Sivateja, and S. K. Sahu, “Effect of nanoalumina on fatigue characteristics of fiber metal laminates,” Polymer Testing, vol. 85, May 2020, Art. no. 106441, doi: 10.1016/j.polymertesting. 2020.106441.
M. Shamohammadi Maryan, H. Ebrahimnezhad- Khaljiri, and R. Eslami-Farsani, “The experimental assessment of the various surface modifications on the tensile and fatigue behaviors of laminated aluminum/aramid fibres-epoxy composites,” International Journal of Fatigue, vol. 154, Jan. 2022, Art. no. 106560, doi: 10.1016/j.ijfatigue. 2021.106560.
M. L. Sanyang, S. M. Sapuan, M. Jawaid, M. R. Ishak, and J. Sahari, “Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review,” Renewable and Sustainable Energy Reviews, vol. 54, pp. 533–549, Feb. 2016, doi: 10.1016/j.rser.2015.10.037.
M. R. Sanjay, P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep, “Characterisation and properties of natural fibre polymer composites: A comprehensive review,” Journal of Cleaner Production, vol. 172, pp. 566–581, Jan. 2018, doi: 10.1016/j.jclepro. 2017.10.101.
S. M. Rangappa, S. Siengchin, J. Parameswaranpillai, M. Jawaid, and T. Ozbakkaloglu, “Lignocellulosic fibre reinforced composites: Progress, performance, properties, applications, and future perspectives,” Polymer Composites, vol. 43, pp. 645–691, Feb. 2022, doi: 10.1002/pc.26413.
J. Parameswaranpillai, J. A. Gopi, S. Radoor, C․ D․ M. Dominic, S. Krishnasamy, K. Deshmukh, N. Hameed, N. V. Salim, and N. Sienkiewicz, “Turning waste plant fibres into advanced plant fibre reinforced polymer composites: A comprehensive review,” Composites Part C: Open Access, vol. 10, Mar. 2023, Art. no. 100333, doi: 10.1016/j.jcomc.2022.100333.
R. Malkapuram, V. Kumar, and Y. Singh Negi, “Recent development in natural fibre reinforced polypropylene composites,” Journal of Reinforced Plastics and Composites, vol. 28, pp. 1169–1189, May 2009, doi: 10.1177/0731684407087759.
L. M. G. Vieira, J. C. Santos, T. H. Panzera, J. C. C. Rubio, and F. Scarpa, “Novel fibre-metal laminate sandwich composite structure with sisal woven core,” Industrial Crops and Products, vol. 99, pp. 189–195, May 2017, doi: 10.1016/j. indcrop.2017.02.008.
V. Ayyappan, S. M. Rangappa, and S. Siengchin, “Recently explored natural cellulosic plant fibres 2018–2022: A potential raw material resource for lightweight composites,” Industrial Crops and Products, vol. 192, Feb. 2023, Art. no. 116099, doi: 10.1016/j.indcrop.2022.116099.
M. J. Sharba, Z. Leman, M. T. H. Sultan, M. R. Ishak, and M. A. Azmah Hanim, “Effects of kenaf fibre orientation on mechanical properties and fatigue life of glass/kenaf hybrid composites,” BioResources, vol. 11, pp. 1448–1165, Jan. 2016, doi: 10.15376/ biores.11.1.1448-1465.
C. Scarponi, F. Sarasini, J. Tirillò, L. Lampani, T. Valente, and P. Gaudenzi, “Low-velocity impact behaviour of hemp fibre reinforced bio-based epoxy laminates,” Composites Part B: Engineering, vol. 91, pp. 162–168, Apr. 2016, doi: 10.1016/j.compositesb.2016.01.048.
J. Fajrin, A. Akmaluddin, and F. Gapsari, “Utilisation of kenaf fiber waste as reinforced polymer composites,” Results in Engineering, vol. 13, Mar. 2022, Art. no. 100380, doi: 10.1016/j.rineng.2022.100380.
V. Raghunathan, V. Ayyappan, J. D. J. Dhilip, D. Sundarrajan, S. M. Rangappa, and S. Siengchin, “Influence of alkali-treated and raw Zanthoxylum acanthopodium fibers on the mechanical, water resistance, and morphological behavior of polymeric composites for lightweight applications,” Biomass Conversion and Biorefinery, Apr. 2023, doi: 10.1007/s13399-023-04240-7.
F. Gapsari, A. Purnowidodo, P. H. Setyarini, S. Suteja, Z. Abidin, S. M. Rangappa, and S. Siengchin, “Flammability and mechanical properties of Timoho fiber-reinforced polyester composite combined with iron powder filler,” Journal of Materials Research and Technology, vol. 21, pp. 212–219, Nov.–Dec. 2022, doi: 10.1016/j.jmrt.2022.09.025.
E. C. Botelho, R. A. Silva, L. C. Pardini, and M. C. Rezende, “A review on the development and properties of continuous fibre/epoxy/aluminum hybrid composites for aircraft structures,” Materials Research, vol. 9, pp. 247–256, Sep. 2006, doi: 10.1590/S1516-14392006000300002.
N. L. Feng, S. DharMalingam, K. A. Zakaria, and M. Z. Selamat, “Investigation on the fatigue life characteristic of kenaf/glass woven-ply reinforced metal sandwich materials,” Journal of Sandwich Structures and Materials, vol. 21, pp. 2440–2455, Oct. 2019, doi: 10.1177/1099636217729910.
L. F. Ng, M. Y. Yahya, C. Muthukumar, X. J. Woo, A. H. Muhaimin, and R. A. Majid, “Mechanical characterisation of aluminum sandwich structures with woven-ply pineapple leaf/glass fibre-reinforced hybrid composite core,” Journal of Natural Fibres, vol. 20, Jan. 2023, Art. no. 2160404, doi: 10.1080/15440478.2022.2160404.
M. Chandrasekar, M. R. Ishak, M. S. Salit, Z. Leman, M. Jawaid, and J. Naveen, “Mechani¬cal properties of a novel fibre-metal laminate reinforced with the carbon, flax, and sugar palm fibres,” BioResources, vol. 13, pp. 5725–5739, Jun. 2018, doi: 10.15376/biores.13.3.5725-5739.
L. F. Ng, M. Y. Yahya, and Z. Mustafa. “Exploration of novel fibre-metal laminates sandwich structures with cellulosic ramie woven core,” Polymer Composites, vol. 43, pp. 6667–6677, Sep. 2022, doi: 10.1002/pc.26990.
L. Ferrante, F. Sarasini, J. Tirillò, L. Lampani, T. Valente, and P. Gaudenzi, “Low velocity impact response of basalt-aluminium fibre-metal laminates,” Materials and Design, vol. 98, pp. 98–107, May 2016, doi: 10.1016/j.matdes. 2016.03.002.
P. Jakubczak, J. Bienias, and B. Surowska, “The influence of fibre orientation in aluminium–carbon laminates on low-velocity impact resistance,” Journal of Composite Materials, vol. 52, pp. 1005–1016, Apr. 2018, doi: 10.1177/0021998317719569.
S. D. Malingam, N. L. Feng, K. Subramaniam, O. Bapokutty, N. Pilvamangalam, and A. F. A. Ghani, “Charpy impact response of fibre-metal laminates based on woven kenaf/glass fibre reinforced polypropylene,” International Journal on Engineering Applications, vol. 8, pp. 58–63, Mar. 2020, doi: 10.15866/irea.v8i2.17830.
L. M. G. Vieira, Y. Dobah, J. C. Santos, T. H. Panzera, J. C. Campos Rubio, and F. Scarpa, “Impact properties of novel natural fibre-metal laminated composite materials,” Applied Sciences, vol. 12, Feb. 2022, Art. no. 1869, doi: 10.3390/app12041869.
S. Mirzamohammadi, R. Eslami-Farsani, and H. Ebrahimnezhad-Khaljiri, “The effect of hybridising natural fibres and adding montmorillonite nanoparticles on the impact and bending properties of eco-friendly metal/ composite laminates,” Advanced Engineering Materials, vol. 25, Mar. 2023, Art. no. 2201791, doi: 10.1002/adem.202201791.
J. Holbery and D. Houston, “Natural-fibre-reinforced polymer composites in automotive applications,” JOM, vol. 58, pp. 80–86, Nov. 2006, doi: 10.1007/s11837-006-0234-2.
D. B. Dittenber and H. V. S. Gangarao, “Critical review of recent publications on use of natural composites in infrastructure,” Composites Part A: Applied Science and Manufacturing, vol. 43, pp. 1419–1429, Aug. 2012, doi: 10.1016/j. compositesa.2011.11.019.
M. R. Islam, M. D. H. Beg, and A. Gupta, “Characterisation of alkali-treated kenaf fibre-reinforced recycled polypropylene composites,” Journal of Thermoplastic Composite Materials, vol. 27, pp. 909–932, Nov. 2014, doi: 10.1177/ 0892705712461511.
M. Khan, S. Rahamathbaba, M. A. Mateen, D. V. Ravi Shankar, and M. Manzoor Hussain, “Effect of NaOH treatment on mechanical strength of banana/epoxy laminates,” Polymers from Renewable Resources, vol. 10, pp. 19–26, Jul. 2019, doi: 10.1177/2041247919863626.
D. Ray, B. K. Sarkar, and A. K. Rana, “Fracture behavior of vinylester resin matrix composites reinforced with alkali-treated jute fibers,” Journal of Applied Polymer Science, vol. 85, pp. 2588–2593, Sep. 2002, doi: 10.1002/app.10933.
S. K. Acharya, P. Mishra, and S. K. Mehar, “Effect of surface treatment on the mechanical properties of bagasse fiber reinforced polymer composite,” BioResources, vol. 6, pp. 55–65, Jul. 2011, doi: 10.15376/biores.6.3.3155-3165.
N. L. Feng, S. D. Malingam, N. Razali, and S. Subramonian, “Alkali and silane treatments towards exemplary mechanical properties of kenaf and pineapple leaf fibre-reinforced composites,” Journal of Bionic Engineering, vol. 17, pp. 80–92, Apr. 2020, doi: 10.1007/s42235- 020-0031-6.
M. R. Morovvati and B. M. Dariani, “The effect of annealing on the formability of aluminum 1200 after accumulative roll bonding,” Journal of Manufacturing Processes, vol. 30, pp. 241–254, Dec. 2017, doi: 10.1016/j.jmapro.2017.09.013.
Y. L. Ding, J. G. Wang, M. Zhao, and D. Y. Ju, “Effect of annealing temperature on joints of diffusion bonded Mg/Al alloys,” Transactions of Nonferrous Metals Society of China, vol. 28, pp. 251–258, Feb. 2018, doi: 10.1016/S1003- 6326(18)64658-8.
L. F. Ng, D. Sivakumar, X. J. Woo, S. Kathiravan, and I. Siva, “The effects of bonding temperature and surface roughness on the shear strength of bonded aluminium laminates using polypropylene based adhesive,” Journal of Advanced Manufacturing Technology, vol. 13, pp. 113–127, Aug. 2019.
Z. Al-Hajaj, B. L. Sy, H. Bougherara, and R. Zdero, “Impact properties of a new hybrid composite material made from woven carbon fibres plus flax fibres in an epoxy matrix,” Composite Structures, vol. 208, pp. 346–356, Jan. 2019, doi: 10.1016/j.compstruct.2018.10.033.
M. Ravandi, U. Kureemun, M. Banu, W. S. Teo, L. Tong, T. E. Tay, and H. P. Lee, “Effect of interlayer carbon fiber dispersion on the low-velocity impact performance of woven flax-carbon hybrid composites,” Journal of Composite Materials, vol. 53, pp. 1717–1734, Oct. 2019, doi: 10.1177/0021998318808355.
L. Francesconi, G. Loi, and F. Aymerich, “Impact and compression-after-impact performance of a thin z-pinned composite laminate,” Journal of Materials Engineering and Performance, vol. 32, pp. 3923–3937, Feb. 2023, doi: 10.1007/s11665- 023-07855-z.
M. Mohammed, M. S. M. Rasidi, A. M. Mohammed, R. Rahman, A. F. Osman, T. Adam, B. O. Betar, and O. S. Dahham, “Interfacial bonding mechanisms of natural fibre-matrix composites: An overview,” BioResources, vol. 17, pp. 7031–7090, Aug. 2022, doi: 10.15376/biores.17.4.Mohammed.
A. Y. Al-Maharma AY and P. Sendur, “Review of the main factors controlling the fracture toughness and impact strength properties of natural composites,” Materials Research Express, vol. 6, Nov. 2019, Art. no. 022001, doi: 10.1088/2053-1591/aaec28.
F. Javanshour, A. Prapavesis, N. Pournoori, G. C. Soares, O. Orell, T. Pärnänen, M. Kanerva, A. W. Van Vuure, and E. Sarlin, “Impact and fatigue tolerant natural fibre reinforced thermoplastic composites by using non-dry fibres,” Composites Part A: Applied Science and Manufacturing, vol. 161, Oct. 2022, Art. no. 107110, doi: 10.1016/j.compositesa. 2022.107110.
N. L. Feng, S. D. Malingam, N. M. Ishak, and K. Subramaniam, “Novel sandwich structure of composite-metal laminates based on cellulosic woven pineapple leaf fibre,” Journal of Sandwich Structures & Materials, vol. 23, pp. 3450–3465, Jun. 2021, doi: 10.1177/1099636220931479.