Effects of Modified Silicon Carbide on The Physical Properties of Bioplastic Blends

Main Article Content

Natkrita Prasoetsopha
Patcharapon Somdee
Manjunath Shettar
Manauwar Ali Ansari
Pranee Chumsamrong

Abstract

The study’s goal is to improve the physical properties of biodegradable plastics by mixing poly(lactic acid) (PLA), polybutylene succinate (PBS), and silicon carbide (SiC) to make composites that could be used as filaments for 3D printing. Polymer blends and composites were fabricated using an internal mixer. The fraction of SiC was varied from 10 to 40 phr and filled in PLA/PBS blends with a retained ratio of 80/20 wt.%. Then, the mechanical properties, thermal properties, melt flow rate and morphology of PLA/PBS/SiC composites were investigated. Field emission scanning electron microscope images present a uniform dispersion of silane-treated SiC particles throughout the PLA/PBS matrix. The morphology showed better adhesion between PLA/PBS and treated SiC particles. Therefore, this was also the reason for the improvement of Young’s modulus and impact strength when the SiC fraction was increased, which were improved by 33% and 104%, respectively, compared to neat PLA. Furthermore, the melt flow rate increased with an increasing SiC fraction. This might be because adding SiC reduces the viscosity of the composites, which affects the molecular chain movement of the PLA/PBS and the crystallinity of PLA, therefore decreasing the ΔHm of PLA and Xc,PLA. However, Tg and Tm of PLA and PBS remained relatively stable with an increasing fraction of SiC particles.

Article Details

How to Cite
Prasoetsopha, N., Somdee, P., Shettar, M., Ansari, M. A., & Chumsamrong, P. (2024). Effects of Modified Silicon Carbide on The Physical Properties of Bioplastic Blends. Applied Science and Engineering Progress, 17(4), 7514. https://doi.org/10.14416/j.asep.2024.07.015
Section
Research Articles

References

M. Y. Mollajavadi, F. F. Tarigheh, and R. Eslami‐Farsani, “Self‐healing polymers containing nanomaterials for biomedical engineering applications: A review,” Polymer Composites, vol. 44, no. 10, pp. 6869–6889, 2023, doi: 10.1002/pc.27603.

D. Jubinville, J. Sharifi, H. Fayazfar, and T. H. Mekonnen, “Hemp hurd filled PLA‐PBAT blend biocomposites compatible with additive manufacturing processes: Fabrication, rheology, and material property investigations,

” Polymer Composites, vol. 44, no. 12, pp. 8946–8961, 2023, doi: 10.1002/pc.27749.

B. Leonard, R. Anamarija, I. Marica, and I Hrvoje, “Medical-grade poly(lactic acid) /hydroxyapatite composite films: thermal and In Vitro degradation properties,” Polymers, vol. 15, no. 15, pp. 1–16, 2023, doi: 10.3390/polym 15061512.

M. Gigli, M. Fabbri, N. Lotti, R. Gamberini, B. Rimini, and A. Munari, “Poly(butylene succinate)-based polyesters for biomedical applications: A review,” European Polymer Journal, vol. 75, pp. 431–460, 2016, doi: 10.1016/j.eurpolymj.2016.01.016.

S. Wang and Q. Xing, “Study on properties and biocompatibility of poly(butylene succinate) and sodium alginate biodegradable composites for biomedical applications,” Materials Research Express, vol. 9, pp. 1–14, 2022, doi: 10.1088/ 2053-1591/ac896f.

L. Aliotta, M. Seggiani, A. Lazzeri, V. Gigante, and P.A. Cinelli, “A brief review of poly (butylene succinate) (PBS) and its main copolymers: Synthesis, blends, composites, biodegradability, and applications,” Polymers, vol. 14, p. 844, 2022, doi: 10.3390/polym14040844.

S. Shen, K. Rodion, T. Sengul, and K. Stephan, “Polylactide (PLA) and its blends with poly(butylene succinate) (PBS): A brief review,” Polymers, vol. 11, no. 7, p. 1193, 2019, doi: 10.3390/polym11071193.

Y. Deng and N. L. Thomas, “Blending poly(butylene succinate) with poly(lactic acid) ductility and phase inversion effects,” European Polymer Journal, vol. 71, pp. 534–546, 2015, doi: 10.1016/j.eurpolymj.2015.08.029.

X. Zhao, D. Zhang, S. Yu, H. Zhou, and S. Peng, “Recent advances in compatibility and toughness of poly(lactic acid)/poly(butylene succinate) blends,” e-Polymers, vol. 21, pp. 793–810, May 2021, doi: 10.1515/epoly-2021-0072.

T. Y. Qiu, M. Song, and L. G. Zhao, “Testing, characterization and modelling of mechanical behaviour of poly(lactic acid) and poly(butylene succiante) blends,” Mechanics of Advanced Materials and Modern Processes, vol. 2, no. 7, pp. 1–11, 2016, doi: 10.1186/s40759-016-0014-9.

T. Yokohara and M. Yamaguchi, “Structure and properties for biomass-based polyester blends of PLA and PBS,” European Polymer Journal, vol. 44, pp. 677–685, 2008, doi: 10.1016/j.eurpolymj. 2008.01.008.

R. Wang, S. Wang, Y. Zhang, C. Wan, and P. Ma, “Toughening modification of PLLA/PBS blends via in situ compatibilization,” Polymer Engineering and Science, 2009, doi: 10.1002/ pen.21210.

S. A. Rafiqah, A. Khalina, A. S. Harmaen, I. A. Tawakkal, K. Zaman, M. Asim, M. N. Nurrazi, and C. H. Lee, “A review on properties and application of bio-based poly(butylene succinate),” Polymers, vol. 13, p. 1436, 2021, doi: 10.3390/ polym13091436.

V. Ojijo, S. S. Ray, and R. Sadiku, “Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly [(butylene succinate)-co-adipate,” ACS Applied Materials & Interfaces, vol. 4, pp. 6690–6701, 2012, doi: 10.1021/ am301842e.

V. Ojijo, S. S. Ray, and R. Sadiku, “Toughening of biodegradable polylactide/poly(butylene succinate co-adipate) blends via in situ reactive compatibilization,” ACS Applied Materials & Interfaces, vol. 5, pp. 4266–4276, 2013, doi: 10.1021/am400482f.

B. Palai, S. Mohanty, and S. K. Nayak, “Synergistic effect of polylactic acid (PLA) and poly(butylene succinate-co-adipate) (PBSA) based sustainable, reactive, super toughened eco-composite blown films for flexible packaging applications,” Polymer Testing, vol. 83, Mar. 2020, Art. no. 106130, doi: 10.1016/j.polymertesting. 2019.106130.

H. Eslami and M. R. Kamal, “Elongational rheology of biodegradable poly(lactic acid)/poly[(butylene succinate)-co-adipate] binary blends and poly(lactic acid)/Poly[(buty

lene succinate)-co-adipate]/clay ternary nanocomposites,” Journal of Applied Polymer Science, 2012, doi: 10.1002/APP.37928.

M. Keramati, I. Ghasemi, M. Karrabi, and H. Azizi, “Microcellular foaming of PP/EPDM/ organoclay nanocomposites: The effect of the distribution of nanoclay on foam morphology,” Polymer Journal, vol. 44, pp. 433–438, Feb. 2012, doi: 10.1038/pj.2012.2.

T. Yokohara, K. Okamoto, and M. Yamaguchi, “Effect of the shape of dispersed particles on the thermal and mechanical properties of biomass polymer blends composed of poly(L-lactide) and poly(butylene succinate),” Journal of Applied Polymer Science, vol. 117, no. 4, pp. 2226–2232, Aug. 2010, doi:10.1002/app.31959.

I. S. Choi, Y. K. Kim, S. H. Hong, H.-J. Seo, S.-H. Hwang, J. Kim, and S. K. Lim, “Effects of polybutylene succinate content on the rheological properties of polylactic acid/polybutylene succinate blends and the characteristics of their fibers,” Materials, vol. 17, 662, Jan. 2024, doi: 10.3390/ma17030662.

Monika, A. K. Pal, S. M. Bhasney, P. Bhagabati, and V. Katiyar, “Effect of dicumyl peroxide on a poly (lactic acid) (PLA) / poly(butylene succinate) (PBS) / functionalized chitosan-based nanobio - composite for packaging: A reactive extrusion study,” ACS Omega, vol. 3, pp. 13298–13312, 2018, doi: 10.1021/acsomega8b00907.

J. Zhou, Z. Yao, C. Zhou, D. Wei, and S. Li, “Mechanical properties of PLA/PBS foamed composites reinforced by organophilic montmorillonite,” Journal of Applied Polymer Science, 2014, Art. no. 40773, doi: 10.1002/ app.40773.

S. Coiai, S. Javarone, F. Cicogna, W. Oberhause, M. Onor, A. Pucci, P. Minei, G. Iasilli, and E. Passaglia, “Fluorescent LDPE and PLA nanocomposites containing fluorescein-modified layered double hydroxides and their ON/OFF responsive behavior towards humidity,” European Polymer Journal, vol. 99, pp. 189–201, Dec. 2017, doi: 10.1016/j.eurpolymj. 2017.12.02.

F. Iñiguez-Franco, R. Auras, M. Rubino, K. Dolan, H. Soto-Valdez, and S. Selke, “Effect of nanoparticles on the hydrolytic degradation of PLA-nanocomposites by water-ethanol solutions,” Polymer Degradation and Stability, vol. 146, pp. 287–297, Nov. 2017, doi: 10.1016/j.polymdegradstab. 2017.11.004.

H. Wu, S. Nagarajan, J. Shu, T. Zhang, L. Zhou, Y. Duan, and J. Zhang, “Green and facile surface modification of cellulose nanocrystal as the route to produce poly(lactic acid) nanocomposites with improved properties,” Carbohydrate Polymers, vol. 197, pp. 204–214, May 2018, doi:10.1016/j.carbpol.2018.05.087.

C. Liu, S. Ye, and J. Feng, “Promoting the dispersion of graphene and crystallization of poly (lactic acid) with a freezing-dried graphene/PEG masterbatch,” Composites Science and Technology, vol. 144, pp. 215–222, Mar. 2017, doi: 10.1016/j.compscitech.2017.03.031.

R. Avolio, R. Castaldo, M. Avella, M. Cocca, G. Gentile, S. Fiori, and E. E. Maria, “PLA-based plasticized nanocomposites: Effect of polymer/plasticizer/filler interactions on the time evolution of properties,” Composites Part B Engineering, vol. 152, pp. 267–274, Jul. 2018, doi: 10.1016/j.compositesb.2018.07.011.

X. Zhang, B. Geng, H. Chen, Y. Chen, Y. Wang, L. Zhang, H. Liu, H. Yang, and J. Chen, “Extraordinary toughness enhancement of poly(lactic acid) by incorporating very low loadings of noncovalent functionalized graphene-oxide via masterbatch-based melt blending,” Chemical Engineering Journal, vol. 334, pp. 2014–2020, Feb. 2018, doi: 10.1016/ j.cej.2017.11.102.

J. B. Zhang, Z. Heng, F. L. Jin, and S. J. Park, “Enhancement of impact strength of poly(lactic acid)/silicon carbide nanocomposites through surface modification with titanate-coupling agents,” Bulletin of Materials Science, vol. 43, no. 6, Dec. 2019, doi: 10.1007/s12034-019-1977-z.

J. Abenojar, J. C. del Real, M. A. Martinez, and M. C. de Santayana, “Effect of silane treatment on SiC particles used as reinforcement in epoxy resins,” The Journal of Adhesion, vol. 85, no.6, pp. 287–301, 2009, doi: 10.1080/0021846090

S. K. Palaniappan, M. K. Singh, S. M. Rangappa, and S. Siengchin, “Eco-friendly biocomposites: A step towards achieving sustainable development goals,” Applied Science and Engineering Progress, vol. 17, no. 4, 2024, Art. no. 7373, doi: 10.14416/j.asep.2024.02.003.

I. Suyambulingam, S. M. Rangappa, and S. Siengchin, “Advanced materials and technologies for engineering applications,” Applied Science and Engineering Progress, vol. 16, no. 3, 2023, Art. no. 6760, doi: 10.14416/j.asep.2023.01.008.

E. M. Agaliotis, B. D. Ake-Concha, A. May-Pat, J. P. Morales-Arias, C. Bernal, A. Valadez-Gonzalez, P. J. Herrera-Franco, G. Proust, J. F. Koh-Dzul, J. G. Carrillo, and E. A. Flores-Johnson, “Tensile behavior of 3D printed polylactic acid (PLA) based composites reinforced with natural fiber,” Polymers, vol. 14, no. 19, 2022, Art. no. 3976, doi: 10.3390/ polym14193976.

V. Raghunathan, V. Ayyappan, S. M. Rangappa, and S. Siengchin, “Development of fiber-reinforced polylactic acid filaments using untreated/silane-treated trichosanthes cucumberina fibers for additive manufacturing,” Journal of Elastomers & Plastics, vol. 56, no. 3, pp. 277–292, 2024, doi: 10.1177/00952443241229186.

A. Vinod, J. Tengsuthiwat, R. Vijay, M. R. Sanja, and S. Siengchin, “Advancing additive manufacturing: 3D-printing of hybrid natural fiber sandwich (Nona/Soy-PLA) composites through filament extrusion and its effect on thermomechanical properties,” Polymer Composites, pp. 1–23, 2024, doi: 10.1002/pc.28302.

L. Jiang, J. Zhang, and M. P. Wolcott, “Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms,” Polymer, vol. 48, no. 26, pp. 7632–7644, Dec. 2007, doi: 10.1016/j.polymer. 2007.11.001.

E. A. Hassan, S. E. Elarabi, Y. Wei, and M. Yu, “Biodegradable poly (lactic acid)/poly (butylene succinate) fibers with high elongation for health care products,” Textile Research Journal, vol. 88, no. 15, pp. 1735–1744, 2018, doi: 10.1177/0040517517708538.

M. Shibata, Y. Inoue, and M. Miyoshi, “Mechanical properties, morphology, and crystallization behavior of blends of poly(l-lactide) with poly (butylene succinate-co-l-lactate) and poly (butylene succinate),” Polymer, vol. 47, pp. 3557–3564, May 2006, doi: 10.1016/j.polymer.2006.03.065.

X. Shang, Y. Zhu, and Z. Li, “Surface modification of silicon carbide with silane coupling agent and hexadecyl iodiele,” Applied Surface Science, vol. 394, pp. 169–177, Oct. 2016, doi: 10.1016/j.apsusc.2016.10.102.

H. Elwathig, W. You, J. He, and M. Yu, “Dynamic mechanical properties and thermal stability of poly (lactic acid) and poly (butylene succinate) blends composites,” Journal of Fiber Bioengineering and Informatics, vol. 6, no. 1, pp. 85–94, 2013, doi: 10.3993/jfbi03201308.

Z. C. Lule, E. W. Shiferaw, and J. Kim, “Thermomechanical properties of SiC-filled polybutylene succinate composite fabricated via melt extrusion,” Polymers, vol. 12, 2020, Art. no. 418, doi: 10.3390/polym12020418.

W. Pivsa-Art and S. Pivsa-Art, “Effect of talc on mechanical characteristics and fracture toughness of poly(lactic acid)/poly(butylene succinate) blend,” Journal of Polymers and the Environment, vol. 27, pp. 1821–1827, 2019, doi: 10.1007/s10924-019-01478-z.

S. S. Yao, Q. Q. Pang, R. Song, F. L. Jin, and S. J. Park, “Fracture toughness improvement of poly(lactic acid) with silicon carbide whiskers,” Macromolecular Research, vol. 24, no. 11, pp. 961–964, 2016, doi: 10.1007/s13233-016-4144-z.

P. Chaiwutthinan, S. Chuayjuljit, S. Srasomsub, and A. Boonmahitthisud, “Composites of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with wood fiber and wollastonite: Physical properties, morphology, and biodegradability,” Journal of Applied Polymer Science, vol. 136, no. 21, Jan. 2019, Art. no. 47543, doi: 10.1002/app.47543.

D. Ji, Z. Liu, X. Lan, F. Wu, B. Xie, and M. Yang, “Morphology, rheology, crystallization behavior, and mechanical properties of poly(lactic acid)/poly(butylene succinate)/ dicumyl peroxide reactive blends,” Journal of Applied Polymer Science, vol. 131, no. 3, Sep. 2013, Art. no. 39580, doi: 10.1002/app.39580.

Y. Guo, S. Zhu, Y. Chen, and D. Li, “Thermal properties of wood-plastic composites with different compositions,” Materials, vol. 12, no. 6, 2019, Art. no. 881, doi: 10.3390/ma12060881.