Nanostructured Composites: Modelling for Tailored Industrial Application

Main Article Content

Gh Owais Shah
Gaurav Arora

Abstract

This comprehensive study explores the application of metallic, polymeric, and hybrid nanocomposites, particularly integrating carbon nanotubes (CNTs) to enhance mechanical properties. Various mathematical models predict critical properties like elastic modulus, with analyses assessing mechanical behavior across different CNT volume fractions. Findings emphasize the influence of fiber distribution and porosity on mechanical properties, with clusters acting as stress concentrators. Matrix materials include Aluminum 356 and HDPE, with CNTs and Coir fibers as reinforcements, and hybrid composites combining HDPE, Coir, and CNTs are studied. Elastic modulus calculations employ micromechanical models, with results varying based on volume fractions and composite compositions. Experimental validation enhances technical robustness, ensuring applicability in real-world scenarios. Aerospace applications favor models like Combined Voigt–Reuss, Halpin–Tsai Equations, and Hashin–Strikman for their accuracy and computational efficiency, while automotive applications prefer Halpin–Tsai Equations and Combined Equations for practical use. These models balance accuracy and computational efficiency, providing valuable insights for industrial applications. The calculated effective modulus ranged from 81.67 GPa to 118.78 GPa for Al-CNT composites, from 11.09 GPa to 51.05 GPa for HDPE-CNT composites, and from 1.15 GPa to 1.34 GPa for HDPE-Coir composites, showcasing the wide range of mechanical properties achievable through different composite compositions and volume fractions.

Article Details

How to Cite
Shah, G. O., & Arora, G. (2024). Nanostructured Composites: Modelling for Tailored Industrial Application. Applied Science and Engineering Progress, 17(4), 7519. https://doi.org/10.14416/j.asep.2024.08.004
Section
Research Articles

References

M. Mitomo and S. Uenosono, “Gas pressure sintering of β-silicon nitride,” Journal of Materials Science, vol. 26, no. 14, 1991, doi: 10.1007/BF01184995.

A. H. Rajamudi Gowda, G. Goud, K. Sathynarayana, and M. Puttegowda, “Influence of water absorption on mechanical and morphological behaviour of roystonea-regia/banana hybrid polyester composites,” Applied Science and Engineering Progress, vol. 17, no. 1, Feb. 2024, Art. no. 7074, doi: 10.14416/j.asep.2023.10.003.

E. T. Thostenson, C. Li, and T. W. Chou, “Nanocomposites in context,” Composites Science and Technology, vol. 65, no. 3–4, pp. 491–516, 2005, doi: 10.1016/j.compscitech.2004. 11.003.

S. C. Tjong, “Structural and mechanical properties of polymer nanocomposites,” Materials Science and Engineering: R: Reports, vol. 53, no. 3–4, pp. 73–197, 2006, doi: 10.1016/j.mser.2006.06.001.

I. Aliyu, S. M. Sapuan, E. S. Zainudin, M. Y. Mohamed Zuhri, and R. Yahaya, “Investigation on microstructure and mechanical characteristics of sugar palm fibre ash reinforced LM26 Al-matrix composites,” Applied Science and Engineering Progress, vol. 16, no. 3, Aug. 2023, Art. no. 6770, doi: 10.14416/j.asep.2023.02.010.

D. Lingaraju, “Studies on regression analysis of carbon fabric polymer hybrid nanocomposite,” Applied Science and Engineering Progress, vol. 5, no. 2, pp. 79–86, Sep. 2012.

M. H. Kumar, S. M. Rangappa, and S. Siengchin, “A comprehensive review on metal matrix composites for railway applications,” Applied Science and Engineering Progress, vol. 15, no. 2, May 2022, Art. no. 5790, doi: 10.14416/j.asep. 2022.03.003.

J. Hári and B. Pukánszky, “Nanocomposites: preparation, structure, and properties: Preparation, structure, and properties,” Applied Plastics Engineering Handbook: Processing, Materials, pp. 109–142, 2011, doi: 10.1016/B978-1-4377-3514-7.10008-X.

X. Huang, X. Qi, F. Boey, and H. Zhang, “Graphene-based composites,” Cheemical Society Reviews, vol. 41, no. 2, pp. 666–686, 2012, doi: 10.1039/c1cs15078b.

F. Nunes de Souza Neto, G. R. Ferreira, T. Sequinel, G. Biasotto, S. A. Cruz, J. C. F. Gimenez, R. Gonçalves, C. H. Scuracchio, C. M. Paranhos da Silva, E. R. Camargo, G. V. Rodrigues, C. Augusto da Rosa, and L. F. Gorup, “Polymeric nanocomposites for automotive application,” in Smart Polymer Nanocomposites Design, Synthesis, Functionalization, Properties and Application. Amsterdam, Netherlands: Elsevier pp. 473–506, 2022,, doi: 10.1016/B978-0-323-91611-0.00009-8.

P. Jagadeesh, M. Puttegowda, S. M. Rangappa, and S. Siengchin, “Role of polymer composites in railway sector: An overview,” Applied Science and Engineerin Progress, vol. 15, no. 2, May 2022, Art. no. 5745, doi: 10.14416/j.asep.2022. 02.005.

D. Feldman, “Polymer nanocomposites in medicine,” Journal of Macromolecular Science, Part A, Pure and Applied Chemistry, vol. 53, no. 1, pp. 55–62, 2016, doi: 10.1080/10601325.2016. 1110459.

G. Arora and H. Pathak, “Fracture and elastoplastic behavior of polymer-carbon nanotube composites under thermomechanical environment: An integrated dual-scale modeling and experimental study,” Journal of Material Engineering and Performance, vol. 31, no. 9, pp. 7120–7137, 2022, doi: 10.1007/s11665-022-06743-2.

S. Padmanabhan, A. Gupta, G. Arora, H. Pathak, R. G. Burela, and A. S. Bhatnagar, “Meso–macro-scale computational analysis of boron nitride nanotube-reinforced aluminium and epoxy nanocomposites: A case study on crack propagation,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Material: Design and Applications, vol. 235, no. 2, Sep. 2020, doi: 10.1177/1464420720961426.

G. Arora and H. Pathak, “Experimental and numerical approach to study mechanical and fracture properties of high-density polyethylene carbon nanotubes composite,” Materials Today Communications, vol. 22, 2020, Art. no. 100829, doi: 10.1016/j.mtcomm.2019.100829.

K. Müller, E. Bugnicourt, M. Latorre, M. Jorda, Y. E. Sanz, J. M. Lagaron, O. Miesbauer, A. Bianchin, S. Hankin, U. Bölz, G. Pérez, M. Jesdinszki, M. Lindner, Z. Scheuerer, S. Castelló, and M. Schmid, “Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields,” Nanomaterials, vol. 7, no. 4, 2017, doi: 10.3390/nano7040074.

N. Bitinis, M. Hernandez, R. Verdejo, J. M. Kenny, and M. A. Lopez-Manchado, “Recent advances in clay/polymer nanocomposites,” Advanced Materials, vol. 23, no. 44, pp. 5229–5236, 2011, doi: 10.1002/adma.201101948.

F. Zaïri, J. M. Gloaguen, M. Naït-Abdelaziz, A. Mesbah, and J. M. Lefebvre, “Study of the effect of size and clay structural parameters on the yield and post-yield response of polymer/clay nanocomposites via a multiscale micromechanical modelling,” Acta Materialia, vol. 59, no. 10, pp. 3851–3863, 2011, doi: 10.1016/j.actamat. 2011.03.009.

J. Diani and K. Gall, “Finite strain 3D thermoviscoelastic constitutive model,” Polymer Engineering and Science, vol. 46, no. 4, pp. 1–10, 2006, doi: 10.1002/pen.20497.

G. K. Maron, B. S. Noremberg, J. H. Alano, F. R. Pereira, V. G. Deon, R. C. R. Santos, V. N. Freire, A. Valentini, and N. L. V. Carreno, “Carbon fiber/epoxy composites: Effect of zinc sulphide coated carbon nanotube on thermal and mechanical properties,” Polymer Bulliten, vol. 75, no. 4, pp. 1619–1633, 2018, doi: 10.1007/ s00289-017-2115-y.

C. C. N. de Melo, C. A. G. Beatrice, L. A. Pessan, A. D. de Oliveira, and F. M. Machado, “Analysis of nonisothermal crystallization kinetics of graphene oxide - reinforced polyamide 6 nanocomposites,” Thermochimica Acta, vol. 667, pp. 111–121, 2018, doi: 10.1016/j.tca.2018.07.014.

H. Gómez, M. K. Ram, F. Alvi, P. Villalba, E. Stefanakos, and A. Kumar, “Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors,” Journal of Power Sources, vol. 196, no. 8, pp. 4102–4108, 2011, doi: 10.1016/j.jpowsour.2010.11.002.

A. Sonia and K. P. Dasan, “Celluloses microfibers (CMF)/poly (ethylene-co-vinyl acetate) (EVA) composites for food packaging applications: A study based on barrier and biodegradation behavior,” Journal of Food Engineering, vol. 118, no. 1, pp. 78–89, 2013, doi: 10.1016/j.jfoodeng.2013.03.020.

J. Marini, E. Pollet, L. Averous, and R. E. S. Bretas, “Elaboration and properties of novel biobased nanocomposites with halloysite nanotubes and thermoplastic polyurethane from dimerized fatty acids,” Polymer (Guildford), vol. 55, no. 20, pp. 5226–5234, 2014, doi: 10.1016/j.polymer.2014.08.049.

P. S. Bisht, G. Arora, and H. Pathak, “Strain-rate sensitivity analysis of microwave processed polypropylene-carbon nanotube composites,” Journal of Engineering Research, In Press, Apr. 2024, doi: 10.1016/j.jer.2024.04.022.

E. Massarwa, I. Emami, and M. Yildiz, “Mechanical behavior and failure of glass / carbon fi ber hybrid composites: Multiscale computational predictions validated by experiments,” Composite Structures, vol. 260, Oct. 2020, 2021, Art. no. 113499, doi: 10.1016/j.compstruct.2020.113499.

R. Kothari, S. I. Kundalwal, S. K. Sahu, and M. C. Ray, “Modeling of thermomechanical properties of polymeric hybrid nanocomposites,” vol. 39, no. 11, pp. 1–17, 2017, doi: 10.1002/ pc.24483

S. B. Nagaraju, M. Puttegowda, M. K. Somashekara, T. G. Thyavihalli Girijappa, P. D. Govindaswamy, and K. Sathyanarayana, “Advancing the performance of ceramic - reinforced aluminum hybrid composites: A comprehensive review and future perspectives,” Applied Science and Engjneering Progress, vol. 17, no. 2, Apr. 2024, Art. no. 7034, doi: 10.14416/ j.asep.2023.10.001.

M. I. Shaharuddin, M. S. Salit, M. Z. Mohamed Yusoff, and M. A. Rahman, “Handgrip automotive prototype of polypropylene reinforced benzoyl treated kenaf and sugar palm fibers: A facile flexural strength and hardness studies,” Applied Science and Engineering Progress, vol. 15, no. 2, May 2022, Art. no. 5883, doi: 10.14416/j.asep. 2022.04.005.

Y. Li and G. D. Seidel, “Multiscale modeling of the interface effects in CNT-epoxy nanocomposites,” Computational Materials Sciences, vol. 153, pp. 363–381, 2018, doi: 10.1016/j.commatsci.2018.07.015.

S. L. Kodjie, L. Li, B. Li, W. Cai, C. Y. Li, and M. Keating, “Morphology and crystallization behavior of HDPE/CNT nanocomposite,” Journal of Macromolecular Sciences, Part B - Physics, vol. 45, no. 2, pp. 231–245, Mar. 2006, doi: 10.1080/00222340500522299.

G. D. Seidel and D. C. Lagoudas, “Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites,” Mechanics of Materials, vol. 38, no 8–10, pp. 884–907, 2006, doi: 10.1016/j.mechmat.2005.06.029.

D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Applied Physics Letters, vol. 76, no. 20, pp. 2868–2870, 2000, doi: 10.1063/1.126500.

Z. Hashin, “Extremum principles for elastic heterogenous media with imperfect interfaces and their application to bounding of effective moduli,” Journal of the Mechanics and Physics of Solids, vol. 40, no. 4, pp. 767–781, 1992, doi: 10.1016/0022-5096(92)90003-K.

R. L. Hamilton, “Thermal conductivity of heterogeneous two-component systems,” Industrial and Engineering Chemistry Fundamentals, vol. 1, no. 3, pp. 187–191, 1962, doi: 10.1021/i160003a005.

J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proceedings of the Royal Society of London. Serries A. Mathematical, Physical and Engineering Sciences, vol. 241, no. 1226, 1957, doi: 10.1098/rspa.1957.0133.

Y. Chen, K. Balani, and A. Agarwal, “Modified Eshelby tensor modeling for elastic property prediction of carbon nanotube reinforced ceramic nanocomposites,” Applied Physics Leters, vol. 91, no. 3, pp. 89–92, 2007, doi: 10.1063/1.2756360.

R. Guzmán de Villoria and A. Miravete, “Mechanical model to evaluate the effect of the dispersion in nanocomposites,” Acta Materialia, vol. 55, no. 9, pp. 3025–3031, 2007, doi: 10.1016/j.actamat.2007.01.007.

T. Rajmohan, K. Palanikumar, and S. Ranganathan, “Evaluation of mechanical and wear properties of hybrid aluminium matrix composites,” Transactions of Nonferrous Metals Society of China, vol. 23, no. 9, pp. 2509–2517, 2013, doi: 10.1016/S1003-6326(13)62762-4.

M. K. Singh and S. Zafar, “Development and mechanical characterization of microwave-cured thermoplastic based natural fibre reinforced composites,” Journal of Thermoplastic Composite Materials, vol. 32, no. 10, pp. 1427–1442, 2019, doi: 10.1177/0892705718799832.

V. Srinivasan, S. Kunjiappan, and P. Palanisamy, “A brief review of carbon nanotube reinforced metal matrix composites for aerospace and defense applications,” International Nano Letters, vol. 11, no. 4, pp. 321–345, 2021, doi: 10.1007/s40089-021-00328-y.

K. G. Thirugnanasambantham, T. Sankaramoorthy, R. Karthikeyan, and K. S. Kumar, “A comprehensive review: Influence of the concentration of carbon nanotubes (CNT) on mechanical characteristics of aluminium metal matrix composites: Part 1,” Materials Today Proceedings, vol. 45, pp. 2561–2566, 2021, doi: 10.1016/j.matpr.2020.11.267.

V. Khanna, V. Kumar, and S. A. Bansal, “Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: Advancement, opportunities and perspective,” Materials Research Bulletin, vol. 138, 2021, Art. no. 111224, doi: 10.1016/j.materresbull. 2021.111224.

S. K. Sahu, N. D. Badgayan, S. Samanta, and P. S. Rama Sreekanth, “Experimental investigation on multidimensional carbon nanofiller reinforcement in HDPE: An evaluation of mechanical performance,” Materials Today Proceedings, vol. 24, pp. 415–421, 2020, doi: 10.1016/j.matpr. 2020.04.293.

V. Balobanov, T. Verho, V. Heino, H. Ronkainen, and J. Pelto, “Micromechanical performance of high-density polyethylene: Experimental and modeling approaches for HDPE and its alumina-nanocomposites,” Polymer Testing, vol. 93, 2021, Art. no. 106936, doi: 10.1016/j.polymertesting.2020.106936.

I. O. Oladele, T. F. Omotosho, G. S. Ogunwande, and F. A. Owa, “A review on the philosophies for the advancement of polymer-based composites: Past, present and future perspective,” Applied Scence and Engineering Progress, vol. 14, no. 4, pp. 553–579, 2021, doi: 10.14416/j.asep.2021. 08.003.

S. Begum, S. Fawzia, and M. S. J. Hashmi, “Polymer matrix composite with natural and synthetic fibres,” Advances in Materials and Processing Technologies, vol. 6, no. 3, pp. 547–564, 2020, doi: 10.1080/2374068X.2020.1728645.

N. I. N. Haris, M. Z. Hassan, R. A. Ilyas, M. A. Suhot, S. M. Sapuan, R. Dolah, R. Mohammad, and M. R. M. Asyraf, “Dynamic mechanical properties of natural fiber reinforced hybrid polymer composites: A review,” Journal of Material Research and Technology, vol. 19, pp. 167–182, 2022, doi: 10.1016/j.jmrt.2022.04.155.

B. D. S. Deeraj, K. Joseph, J. S. Jayan, and A. Saritha, “Dynamic mechanical performance of natural fiber reinforced composites: A brief review,” Applied Science Engineering Progress., vol. 14, no. 4, pp. 614–623, 2021, doi: 10.14416/j.asep.2021.06.003.

S. Rathinavel, K. Priyadharshini, and D. Panda, “A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application,” Material Science and Engineering: B, vol. 268, 2021, Art. no. 115095, doi: 10.1016/j.mseb.2021.115095.

A. Gacem, S. Modi, V. K. Yadav, S. Islam, A. Patel, V. Dawane, M. Jameel, G. K. Inwati, S. Piplode, V. S. Solanki, and A. Basnet, “Recent advances in methods for synthesis of carbon nanotubes and carbon nanocomposite and their emerging applications: A descriptive review,” Journal of Nanomaterials, vol. 2022, no. 1, 2022, doi: 10.1155/2022/7238602.