Tuning Rigid Polyurethane Foam with Eco-friendly Cellulose Nanocrystals from Oil Palm Empty Fruit Bunches as Energy-Efficient Material Composites for Buildings
Main Article Content
Abstract
The development of novel materials based on renewable materials with beneficial properties that assist with energy efficiency and conservation has been encouraged by increasing consciousness of environmental issues. This research intends to use sustainable cellulose nanocrystals (CNC) obtained from oil palm empty fruit bunches (OPEFB) as reinforcement to enhance the properties of rigid polyurethane foam (RPUF). RPUF reinforcement with varied CNC concentrations (0.25–1 wt%) was examined by foaming behavior, surface morphology, mechanical properties, thermal insulation properties, dimensional stability, efficiency energy study, and CO2 reduction through their thermal conductivity values. The results achieved an optimal improvement of mechanical properties of the RPUF composite by around 23.53% compared to RPUF control, at the addition of 0.5 wt% of CNC concentration while maintaining the density of 37–39 kg/m3. Further, incorporating CNC improved thermal insulating performance by 9.95%, as reflected by decreased thermal conductivity from 0.0292 W/mK to 0.0269 W/mK and decreased cell size by 28.12%. Finally, based on the energy and cost efficiency studies, RPUF-CNC composites offer up to 0.78 kWh/m2 and 0.031 kWh/m2 compared to conventional wall materials made of concrete and wood, respectively. Furthermore, it contributed to reduced greenhouse gas (GHG) emissions by 110 and 7.2 kg CO2/year compared to concrete and wood, respectively. This work demonstrates the promising use of eco-friendly building insulation materials to mitigate the energy and environmental crisis.
Article Details
References
M. Farghali, A. I. Osman, I. M. A. Mohamed, Z. Chen, L. Chen, I. Ihara, P.-S. Yap, and D. W. Rooney, “Strategies to save energy in the context of the energy crisis: A review,” Environmental Chemistry Letters, vol. 21, no. 4, pp. 2003–2039, 2023. doi: 10.1007/s10311-023-01591-5.
X. Meng, B. Yan, Y. Gao, J. Wang, W. Zhang, and E. Long, “Factors affecting the in situ measurement accuracy of the wall heat transfer coefficient using the heat flow meter method,” Energy and Buildings, vol. 86, pp. 754–765, Jan. 2015, doi: 10.1016/j.enbuild.2014.11.005.
A. Almusaed, A. Almssad, A. Alasadi, I. Yitmen, and S. Al-Samaraee, “Assessing the role and efficiency of thermal insulation by the ‘BIO-GREEN PANEL’ in enhancing sustainability in a built environment,” Sustainability (Switzerland), vol. 15, p. 25, 2023, doi: 10.3390/su151310418.
G. Tang, L. Zhou, P. Zhang, Z. Han, D. Chen, X. Liu, and Z. Zhou, “Effect of aluminum diethylphosphinate on flame retardant and thermal properties of rigid polyurethane foam composites,” Journal of Thermal Analysis and Calorimetry, vol. 140, no. 2, pp. 625–636, Apr. 2020, doi: 10.1007/s10973-019-08897-z.
L. He, F. Chu, X. Zhou, L. Song, and Y. Hu, “Cactus-like structure of BP@MoS2 hybrids: An effective mechanical reinforcement and flame retardant additive for waterborne polyurethane,” Polymer Degradation and Stability, vol. 202, Aug. 2022, Art. no. 110027, doi: 10.1016/ j.polymdegradstab.2022.110027.
Y. Tao, P. Li, H. Zhang, S. Q. Shi, J. Zhang, and Q. Yin, “Compression and flexural properties of rigid polyurethane foam composites reinforced with 3D-printed polylactic acid lattice structures,” Composite Structures, vol. 279, Jan. 2022, Art. no. 114866, doi: 10.1016/j.compstruct. 2021.114866.
M. Albozahid, S. A. Habeeb, N. A. I. Alhilo, and A. Saiani, “The impact of graphene nanofiller loading on the morphology and rheology behaviour of highly rigid polyurethane copolymer,” Materials Research Express, vol. 7, no. 12, Dec. 2020, Art. no. 125304, doi: 10.1088/ 2053-1591/aba5ce.
S. B. Nagaraju, M. Puttegowda, Y. G. T. Girijappa, N. K. Rawat, A. Verma, S. M. Rangappa, and S. Siengchin, “Mechanical characterization and water absorption behavior of waste coconut leaf stalk fiber reinforced hybrid polymer composite: Impact of chemical treatment,” Applied Science and Engineering Progress, vol. 17, no. 3, May 2024, doi: 10.14416/j.asep.2024.05.003.
V. Dogra, C. Kishore, A. Verma, A. K. Rana, and A. Gaur, “Fabrication and experimental testing of hybrid composite material having biodegradable bagasse fiber in a modified epoxy resin: evaluation of mechanical and morphological behavior,” Applied Science and Engineering Progress, vol. 14, no. 4, Jun. 2021, doi: 10.14416/j.asep.2021.06.002.
M. Chanes de Souza, I. Moroz, I. Cesarino, A. L. Leão, M. Jawaid, and O. A. Titton Dias, “A review of natural fibers reinforced composites for railroad applications,” Applied Science and Engineering Progress, vol. 15, no. 2, Mar. 2022, doi: 10.14416/j.asep.2022.03.001.
M. Stanzione, M. Oliviero, M. Cocca, M. E. Errico, G. Gentile, M. Avella, M. Lavorgna, G. G. Buonocore, and L. Verdolotti, “Tuning of polyurethane foam mechanical and thermal properties using ball-milled cellulose,” Carbohydrate Polymers, vol. 231, Mar. 2020, Art. no. 115772, doi: 10.1016/j.carbpol.2019. 115772.
C. Santos, T. Santos, K. Moreira, M. Aquino, and R. F. Lucas Zillio, “Statistical study of the influence of fiber content, fiber length and critical length in the mechanical behavior of polymeric composites reinforced with carica papaya fibers (CPFs),” Applied Science and Engineering Progress, vol. 14, no. 4, Jul. 2021, doi: 10.14416/j.asep.2021.07.002.
A. Dhandapani, S. Krishnasamy, T. Ungtrakul, S. M. K. Thiagamani, R. Nagarajan, C. Muthukumar, and G. Chinnachamy, “Desirability of tribo-performance of natural based thermoset and thermoplastic composites: A concise review,” Applied Science and Engineering Progress, vol. 14, no. 4, Jul. 2021, doi: 10.14416/j.asep.2021.07.001.
N. A. Azra, A. Atiqah, H. Fadhlina, M. A. Bakar, A. Jalar, R. A. Ilyas, J. Naveen, F. A. Sabaruddin, K. K. Lim, and M. Asrofi, “Oil-palm based nanocellulose reinforced thermoplastic polyurethane for plastic encapsulation of biomedical sensor devices: water absorption, thickness swelling and density properties,” Applied Science and Engineering Progress, vol. 16, no. 1, Feb. 2022, doi: 10.14416/j.asep. 2022.02.001.
R. Gu, M. M. Sain, and S. K. Konar, “A feasibility study of polyurethane composite foam with added hardwood pulp,” Industrial Crops and Products, vol. 42, pp. 273–279, Mar. 2013, doi: 10.1016/j.indcrop.2012.06.006.
S. Ju, A. Lee, Y. Shin, H. Jang, J.W. Yi, Y. Oh, N.J. Jo, and T. Park, “Preventing the collapse behavior of polyurethane foams with the addition of cellulose nanofiber,” Polymers, vol. 15, no. 6, 2023, doi: 10.3390/polym15061499.
C. L. Yiin, S. Ho, S. Yusup, A. T. Quitain, Y. H. Chan, A. C. M. Loy, and Y. L. Gwee, “Recovery of cellulose fibers from oil palm empty fruit bunch for pulp and paper using green delignification approach,” Bioresource Technology, vol. 290, Oct. 2019, Art. no. 121797, doi: 10.1016/J.BIORTECH.2019.121797.
F. Jiang and Y.-L. Hsieh, “Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing–thawing,” Journal of Materials Chemistry A, vol. 2, no. 2, pp. 350–359, 2014, doi: 10.1039/C3TA13629A.
S. K. Evans, O. N. Wesley, O. Nathan, and M. J. Moloto, “Chemically purified cellulose and its nanocrystals from sugarcane baggase: isolation and characterization,” Heliyon, vol. 5, no. 10, Oct. 2019, Art. no. e02635, doi: 10.1016/j.heliyon.2019.e02635.
B. S. L. Brito, F. V. Pereira, J.-L. Putaux, and B. Jean, “Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers,” Cellulose, vol. 19, no. 5, pp. 1527–1536, Oct. 2012, doi: 10.1007/s10570-012-9738-9.
D. Zheng, Y. Zhang, Y. Guo, and J. Yue, “Isolation and characterization of nanocellulose with a novel shape from walnut (Juglans regia l.) shell agricultural waste,” Polymers, vol. 11, no. 7, p. 1130, Jul. 2019, doi: 10.3390/polym11071130.
V. H. Tran, J.-D. Kim, J.-H. Kim, S.-K. Kim, and J.-M. Lee, “Influence of cellulose nanocrystal on the cryogenic mechanical behavior and thermal conductivity of polyurethane composite,” Journal of Polymers and Environment, vol. 28, no. 4, pp. 1169–1179, Apr. 2020, doi: 10.1007/s10924-020-01673-3.
V. Jonjaroen, S. Ummartyotin, and S. Chittapun, “Algal cellulose as a reinforcement in rigid polyurethane foam,” Algal Research, vol. 51, Oct. 2020, Art. no. 102057, doi: 10.1016/j.algal. 2020.102057.
A. Redondo, N. Mortensen, K. Djeghdi, D. Jang, R. D. Ortuso, C. Weder, L. T. J. Korley, U. Steiner, and I. Gunkel “Comparing percolation and alignment of cellulose nanocrystals for the reinforcement of polyurethane nanocomposites,” ACS Applied Materials and Interfaces Journal, vol. 14, no. 5, pp. 7270–7282, Feb. 2022, doi: 10.1021/acsami.1c21656.
A. A. Septevani, P. K. Annamalai, and D. J. Martin, “Synthesis and characterization of cellulose nanocrystals as reinforcing agent in solely palm based polyurethane foam,” AIP Conference Proceedings, vol. 1904, no. 1, Nov. 2017, doi: 10.1063/1.5011899.
A. A. Septevani, D. A. C. Evans, P. K. Annamalai, and D. J. Martin, “The use of cellulose nanocrystals to enhance the thermal insulation properties and sustainability of rigid polyurethane foam,” Industrial Crops and Products, vol. 107, pp. 114–121, 2017, doi: 10.1016/j.indcrop.2017.05.039.
N. D. Sanandiya, Y. Vijay, M. Dimopoulou, S. Dritsas, and J. G. Fernandez, “Large-scale additive manufacturing with bioinspired cellulosic materials,” Nature, vol. 8, no. 1, p. 8642, Jun. 2018, doi: 10.1038/s41598-018-26985-2.
J. Weng, A. Durand, and S. Desobry, “Chitosan-based particulate carriers: Structure, production, and corresponding controlled release,” Pharmaceutics, vol. 15, no. 5, p. 1455, May 2023, doi: 10.3390/pharmaceutics15051455.
T. Elango, A. Kannan, and K. Kalidasa Murugavel, “Performance study on single basin single slope solar still with different water nanofluids,” Desalination, vol. 360, pp. 45–51, Mar. 2015, doi: 10.1016/j.desal.2015.01.004.
F. Yurid, A. S. Handayani, F. D. Maturbongs, Y Irawan4, Y. Sampora, Y A Devy, M Septiyanti, D. Ramdani, E. Supriadi, and K. N. M. Amin “Production of nanocellulose using controlled acid hydrolysis from large-scale production of micro-fibrillated cellulose derived from oil palm empty fruit bunches,” in IOP Conference Series: Earth and Environmental Science, vol. 1201, no. 1, 2023, Art. no. 012078, doi: 10.1088/1755-1315/1201/1/012078.
M. V. Gangoiti and P. J. Peruzzo, “Cellulose nanocrystal reinforced acylglycerol-based polyurethane foams,” Express Polymer Letters, vol. 14, no. 7, pp. 638–650, 2020, doi: 10.3144/expresspolymlett.2020.52.
O. F. Olanrewaju, I. O. Oladele, T. F. Omotosho, F. A. Atilola, and S. O. Adelani, “Influence of quartz and marble on the performance of particulate-filled rigid polyurethane foams,” Journal of Engineering and Technology, vol. 6, no. 1, pp. 008–025, Feb. 2024, doi: 10.53022/oarjet.2024.6.1.0011.
A. A. Septevani, D. A. C. Evans, C. Chaleat, D. J. Martin, and P. K. Annamalai, “A systematic study substituting polyether polyol with palm kernel oil based polyester polyol in rigid polyurethane foam,” Industrial Crops and Products, vol. 66, pp. 16–26, Feb. 2015, doi: 10.1016/j.indcrop.2014.11.053.
T. Kattiyaboot and C. Thongpin, “Effect of natural oil based polyols on the properties of flexible polyurethane foams blown by distilled water,” Energy Procedia, vol. 89, pp. 177–185, Jun. 2016, doi: 10.1016/j.egypro.2016.05.024.
A. Strąkowska, S. Członka, and K. Strzelec, “POSS compounds as modifiers for rigid polyurethane foams (composites),” Polymers, vol. 11, no. 7, p. 1092, Jun. 2019, doi: 10.3390/polym11071092.
A. A. Septevani, D. A. C. Evans, D. J. Martin, P. Song, and P. K. Annamalai, “Tuning the microstructure of polyurethane foam using nanocellulose for improved thermal insulation properties through an efficient dispersion methodology,” Polymer Composites, vol. 44, no. 12, pp. 8857–8869, Sep. 2023, doi: 10.1002/pc.27743.
L. D. Mora-Murillo, F. Orozco-Gutierrez, J. Vega-Baudrit, and R. J. González-Paz, “Thermal-mechanical characterization of polyurethane rigid foams: Effect of modifying bio-polyol content in isocyanate prepolymers,” Journal Renewable Materials, vol. 5, no. 3, pp. 220–230, Jul. 2017, doi: 10.7569/JRM.2017.634112.
T. Boulaouche, D. E. Kherroub, K. Khimeche, and M. Belbachir, “Green strategy for the synthesis of polyurethane by a heterogeneous catalyst based on activated clay,” Research on Chemical Intermediates, vol. 45, no. 6, pp. 3585–3600, Jun. 2019, doi: 10.1007/s11164-019-03810-7.
A. Ivdre, A. Abolins, N. Volkovs, L. Vevere, A. Paze, R. Makars, D. Godina, and J. Rizikovs “Rigid polyurethane foams as thermal insulation material from novel suberinic acid-based polyols,” Polymers, vol. 15, no. 14, Jul. 2023, doi: 10.3390/polym15143124.
M. Lonescu, Chemistry and Technology of Polyols for Polyurethanes. 2nd ed. UK: Smithers Rapra Publishing, 2005.
E. Robles, J. Fernández-Rodríguez, A. M. Barbosa, O. Gordobil, N. L. V. Carreño, and J. Labidi, “Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes,” Carbohydr Polym, vol. 183, pp. 294–302, Mar. 2018, doi: 10.1016/j.carbpol.2018.01.015.
F. Coccia, L. Gryshchuk, P. Moimare, F. L. Bossa, C. Santillo, E. Barak-Kulbak, L. Verdolotti, L. Boggioni, and G. C. Lama “Chemically functionalized cellulose nanocrystals as reactive filler in bio-based polyurethane foams,” Polymers, vol. 13, no. 15, p. 2556, Jul. 2021, doi: 10.3390/polym13152556.
S. Anam, H. Kyungrok, K. Taekyeong, J. Jin, and C. I. Woo, “Enhancing thermal and mechanical properties of rigid polyurethane foam with eco-friendly silane-modified cellulose nanocrystals,” Social Science Research Network Journals, pp. 1–33, Jan. 2024, doi: 10.2139/ssrn. 4699987.
A. Lorenzetti, M. Roso, A. Bruschetta, C. Boaretti, and M. Modesti, “Polyurethane-graphene nanocomposite foams with enhanced thermal insulating properties,” Polymers for Advanced Technologies, vol. 27, no. 3, pp. 303–307, Mar. 2016, doi: 10.1002/pat.3635.
X. Zhou, M. M. Sain, and K. Oksman, “Semi-rigid biopolyurethane foams based on palm-oil polyol and reinforced with cellulose nanocrystals,” Compos Part A: Applied Science and Manufacturing, vol. 83, pp. 56–62, Apr. 2016, doi: 10.1016/j.compositesa.2015.06.008.
Rockwool, “Dimensional Stability of Rigid Board Insulation Products,” 2023. [Online]. Available: https://www.rockwool.com
K. Moncef, Optimal Design and Retrofit of Energy Efficient Buildings, Communities, and Urban Centers. Oxford, UK: Butterworth-Heinemann, 2018.
S. Ilomets, K. Kuusk, L. Paap, E. Arumagi, and T. Kalamees, “Impact of linear thermal bridges on thermal transmittance of renovated apartment buildings,” Journal Of Civil Engineering and Management, vol. 23, no. 1, pp. 96–104, Jun. 2016, doi: 10.3846/13923730.2014.976259.
M. Płoszaj-Mazurek, E. Ryńska, and M. Grochulska-Salak, “Methods to optimize carbon footprint of buildings in regenerative architectural design with the use of machine learning, convolutional neural network, and parametric design,” Energies, vol. 13, no. 20, p. 5289, Oct. 2020, doi: 10.3390/en13205289.
Y. He, T. Kvan, M. Liu, and B. Li, “How green building rating systems affect designing green,” Building and Environment, vol. 133, pp. 19–31, Apr. 2018, doi: 10.1016/j.buildenv.2018.02.007.