Electrochemical Characteristics of Ambarella Peel Waste as Liquid Electrolyte for Zn-Cu Biobattery

Main Article Content

Marcelinus Christwardana
Renanda Aprilia Putri Pramudita
Ngadiwiyana Ngadiwiyana

Abstract

This study focuses on the electrochemical characterization of Zn-Cu bio-battery cells utilizing electrolytes derived from ambarella peel waste. The primary objectives are to determine the half-cell and full-cell characteristics of these bio-batteries at various concentration ratios and to identify the optimal concentration ratio for maximum performance. Cyclic voltammetry analysis of the half-cells revealed an oxidation peak at 0.5 V vs Ag/AgCl, corresponding to the conversion of uronic acid to aldaric acid. Additionally, two reduction peaks were observed: hydrogen ion reduction to H2 at 0 V vs Ag/AgCl and water reduction at –0.42 V vs Ag/AgCl. The rate-determining step analysis indicated that the redox reactions in the ambarella peel electrolyte solution were surface reactions. The highest rate constant (ks) of 0.722 ± 0.05 s–1 was observed at a 1:2 concentration ratio. This ratio also resulted in the highest battery capacity of 0.0816 mAh and the maximum power density of 16.13 mW/m2. The study concluded that the 1:2 concentration ratio of ambarella peel waste electrolyte solution is optimal, outperforming the 1:1 and 1:3 ratios in terms of battery capacity and power density.

Article Details

How to Cite
Christwardana, M., Putri Pramudita, R. A., & Ngadiwiyana, N. (2025). Electrochemical Characteristics of Ambarella Peel Waste as Liquid Electrolyte for Zn-Cu Biobattery. Applied Science and Engineering Progress, 18(2), 7609. https://doi.org/10.14416/j.asep.2024.11.001
Section
Research Articles

References

Y. Afriyanti, H. Sasana, and G. Jalunggono, “Analisis faktor-faktor yang mempengaruhi konsumsi energi terbarukan di Indonesia,” Dinamic, vol. 2, no. 3, pp. 865–884, 2020.

L. Parinduri and T. Parinduri, “Konversi biomassa sebagai sumber energi terbarukan,” Journal of Electrical Technology, vol. 5, no. 2, pp. 88–92, 2020.

O. Togibasa, E. Haryati, K. Dahlan, Y. Ansanay, T. Siregar, and M. N. Liling, “Characterization of bio-battery from tropical almond paste,” Journal of Physics: Conference Series, vol. 1204, 2019, Art. no. 012036.

M. Nasution, “Karakteristik baterai sebagai penyimpan energi listrik secara spesifik,” Journal of Electrical Technology, vol. 6, no. 1, pp. 35–40, 2021.

A. E. Setyono and N. Sinaga, “Zero waste Indonesia: Peluang, Tantangan dan optimalisasi waste to energy,” Eksergi, vol. 17, no. 2, pp. 116–124, 2021.

K. So, Y. Kitazumi, O. Shirai, and K. Kano, “Analysis of factors governing direct electron transfer - type bioelectrocatalysis of bilirubin oxidase at modified electrodes,” Journal of Electroanalytical Chemistry, vol. 783, pp. 316–323, 2016.

U. Z. Siddiqui and A. K. Pathrikar, “The future of energy biobattery,” International Journal of Research in Engineering and Technology, vol. 2, pp. 99–111, 2013.

H. Kamilah, T. W. DS, and S. Maftukhah, “Pemanfaatan buah kedondong dan kulit pisang ambon sebagai sumber energi listrik alternatif,” Jurnal Ilmiah Fakultas Teknik, vol 1, pp. 142–151, 2020.

Z. Hussain, Zuhra, G. Rukh, A. Zada, M. Y. Naz, K. M. Khan, S. Shukrullah, and S. A. Sulaiman, “Construction of rechargeable bio-battery cells from electroactive antioxidants extracted from wasted vegetables,” Cleaner Engineering and Technology, vol. 5, 2021, Art. no. 100342.

S. W. Suciyati, and A. Supriyanto, “Analisis jeruk dan kulit jeruk sebagai larutan elektrolit terhadap kelistrikan sel volta,” Jurnal Teori Dan Aplikasi Fisika, vol. 7, pp. 7–16, 2019.

B. B. Koubala, G. Kansci, and M.-C. Ralet, Ambarella—Spondias Cytherea, in Exotic Fruits. Amsterdam, Netherlands: Elsevier, pp. 15–22, 2019.

F. Walsh, “Electrolytic conductivity and its measurement,” Transactions of The IMF, vol. 70, pp. 45–49, 1992.

H. Purnomo, “Pengaruh keasaman buah jeruk terhadap konduktivitas listrik,” Orbith, vol. 6 pp. 276–281, 2010.

B. Liu, S. Wang, Z. Wang, H. Lei, Z. Chen, and W. Mai, “Novel 3D nanoporous Zn–Xu alloy as long‐life anode toward high‐voltage double electrolyte aqueous zinc‐ion batteries,” Small, vol. 16, no. 22, 2020, Art. no. 2001323.

Q. Zhu, M. Cheng, B. Zhang, K. Jin, S. Chen, Z. Ren, & Y. Yu, “Realizing a rechargeable high‐performance Cu–Zn battery by adjusting the solubility of Cu2+,” Advanced Functional Materials, vol. 29, 2019, Art. no. 1905979.

N. Fitrya, S.P. Wirman, and R.D. Rahayu, “Environmentally friendly emergency lighting system using bio batteries from pineapple skin waste as energy source,” Jurnal Ilmu Fisika, vol 13, no. 2, pp. 118–125, 2021.

M. Christwardana and A. Y. Maulana, “Exploring ambarella's potential as an eco-friendly zinc-copper biobattery electrolyte: preliminary electrochemistry study,” Analytical And Bioanalytical Electrochemistry, vol. 15, no. 12, pp. 1074–1085, 2023.

T. Gonfa. S. Teketle, and T.Kiros, “Effect of extraction solvent on qualitative and quantitative analysis of major phyto-constituents and in-vitro antioxidant activity evaluation of cadaba rotundifolia forssk leaf extracts,” Cogent Food & Agriculture, vol. 6, no. 1, 2020, Art. no. 1853867.

T. K. Patle, K. Shrivas. R, Kurrey. S, Upadhyay. R, Jangde and R. Chauhan, “Phytochemical screening and determination of phenolics and flavonoids in dillenia pentagyna using uv–vis and ftir spectroscopy,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 242, pp. 118717. 2020.

B. Hamzah, S. Rahmawati, W. S. Suwena, M. F. Hardani, and R. Hardani, “Analysis of tannin in sapodilla fruit (Manilkara zapota (l) van royen),” Rasayan Journal of Chemistry, vol. 13, no. 04, pp. 2243–2248, 2020.

M. A. Leba, E. G. Boelan, M. M. Taek, S. D. Mau, J. D. C, Ruas. M. B, Tukan and A. B. Baunsele, “Exploring purple sweet potato pigment as an eco-friendly titration indicator for acid determination,” Tropical Journal of Natural Product Research, vol. 8, no. 6, p. 7403, 2024.

C. Theodora, I. Gunawan, and I. Swantara, “Isolasi dan identifikasi golongan flavonoid pada ekstrak etil asetat daun gedi (Abelmoschus manihot L.),” Jurnal Kimia (Journal of Chemistry), vol. 3, no. 2, pp. 131–138, 2019.

J. B. Harborne, Metode Fitokimia: Penuntun Cara Modern Menganalisis Tumbuhan. Bandung, Indonesia: Penerbit ITB, vol. 78, 1987.

M. Barros, A. M. Coimbra, A. Barros, D. Rutledge, and I. Delgadillo, “Analysis of uronic acid in pectic material by FT-IR spectroscopy,” in Spectroscopy of Biological Molecules: Modern Trends, P. Carmona, R. Navarro, and A. Hernanz, Eds. Dordrecht: Springer, pp. 275–276, 1997.

M. A. Beluomini, J. L. D. Silva, and N. R. Stradiotto, “Determination of uronic acids in sugarcane bagasse by anion-exchange chromatography using an electrode modified with copper nanoparticles,” Analytical Methods, vol. 7, no. 6, pp. 2347–2353. 2015.

M. C. Monteiro and M. T. Koper, “Alumina contamination through polishing and its effect on hydrogen evolution on gold electrodes,” Electrochimica Acta, vol. 325, 2019, Art. no. 134915.

L. B. Sheridan, D. K. Hensley, N. V. Lavrik, S. C. Smith, V. Schwartz, C. Liang and A. J. Rondinone, “Growth and electrochemical characterization of carbon nanospike thin film electrodes,” Journal of The Electrochemical Society, vol. 161, no. 9, p. H558, 2014.

G. Strack, S. Babanova, K. E. Farrington, H. R. Luckarift, P. Atanassov, and G. R Johnson, “Enzyme-modified buckypaper for bioelectrocatalysis,” Journal of The Electrochemical Society, vol. 160, no. 7, p. G3178, 2013.

E. Laviron, “General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 101, no. 1, pp. 19–28, 1979.

W. Zhang, X. Chen, Y. Wang, L. Wu, and Y. Hu, “Experimental and modeling of conductivity for electrolyte solution systems,” ACS Omega, vol. 5, no. 35, pp. 22465–22474, 2020.

D. A. D. Silva, A. Messias, E. E. Fileti, A. Pascon, D. V. Franco, L. M. Da Silva, and H. G. Zanin. “Effect of conductivity, viscosity, and density of water-in-salt electrolytes on the electrochemical behavior of supercapacitors: molecular dynamics simulations and in situ characterization studies,” Materials Advances, vol. 3, no. 1, pp. 611–623, 2022.

D. J. Swartling and C. Morgan, “Lemon cells revisited-the lemon-powered calculator,” Journal of Chemical Education, vol. 75, no. 2, p. 181, 1998.

Z. Wang, X. Li, Z. Yang, H. Guo, Y. J. Tan, G. J. Susanto, and B. C. K. Tee, “Fully transient stretchable fruit‐based battery as safe and environmentally friendly power source for wearable electronics,” Ecomat, vol. 1, p. E12073, 2021.

Q. Wang, C. Sun, Y. Gu, L. Wang, Q. Xu, H. Dong, and X. Lu, “Synergistic promotion of ascorbic acid and sodium citrate to the stability of electrolyte for electrolytic iron production,” Journal of Applied Electrochemistry, vol. 54, pp. 1–14, 2024.

S. M. S. Nadeem and S. M. R. Ullah, “The study of ionic interactions of monovalent electrolytes in aqueous polyvinyl alcohol and polyacrylamide by conductance method,” Ionics, vol. 26, pp. 2927–2940, 2020.

G. Wang, L. Zhang, and J. Zhang, “A review of electrode materials for electrochemical supercapacitors,” Chemical Society Reviews, vol. 41, no. 2, pp. 797–828, 2012.

Y. J. Sa, C. W. Lee, S. Y. Lee, J. Na, U. Lee, and Y. J. Hwang, “Catalyst–electrolyte interface chemistry for electrochemical CO2 reduction,” Chemical Society Reviews, vol. 49, no. 18, pp. 6632–6665, 2020.

K. A. Khan, L. Hassan, A. K. M. Obaydullah, S. M. Azharul Islam, M. A. Mamun, T. Akter, and M. Shahjahan, “Bioelectricity: a new approach to provide the electrical power from vegetative and fruits at off-grid region,” Microsystem Technologies, vol. 26, pp. 3161–3172, 2020.

H. H. Djumat, “Upaya peningkatan hasil belajar siswa pada materi larutan asam basa dengan menggunakan pendekatan inkuiri,” Edukasi, vol. 14, no. 2, 2016, doi: 10.33387/j.edu.v14i2.196.

W. R. Smith, “A precise, simple and general basic le châtelier principle based on elementary calculus: what le châtelier had in mind?,” Journal of Mathematical Chemistry, vol. 58, no. 8, pp. 1548–1570, 2020.