Development and Performance Comparison of Models for Screening Randomly At-Risk Patients with Kidney Disease Using Data Mining Techniques การพัฒนาและการเปรียบเทียบประสิทธิภาพของตัวแบบสำหรับการคัดกรองผู้ป่วยกลุ่มที่สุ่มเสี่ยงเป็นโรคไต ด้วยเทคนิคการทำเหมืองข้อมูล

Main Article Content

warawut narkbunnum
อนุพงศ์ สุขประเสริฐ
อันดี้ เอเว่นส์
อริสรา สัตย์ซื่อ
อุไรวรรณ ทิจันธุง
กาญจนา หินเธาว์

Abstract

ABSTRACT


           Kidney disease is a major global public health problem that greatly affects patients' quality of life and imposes high treatment costs, especially in low- and middle-income countries. Studies have shown that the prevalence of chronic kidney disease stages 3-5 in Thailand is 12.4%, which is close to the global average but has been increasing continuously. Early screening for kidney disease is crucial in slowing down kidney deterioration and reducing complication rates. This study aimed to develop a model for screening individuals at risk of kidney disease using data mining techniques and to compare the performance of three data classification algorithms: Decision Tree, Random Forest, and K-Nearest Neighbors (KNN). A dataset of 1,500 records from a public database, including both at-risk and not-at-risk individuals for kidney disease, was used. The results showed that the KNN technique with a k value of 11 yielded the highest performance, with an accuracy of 89.20% and an overall F-measure of 17.35%, demonstrating its potential for accurate risk group screening. The findings of this research are beneficial for developing clinical decision support systems to assist healthcare professionals in identifying at-risk individuals and planning appropriate care, which can lead to reduced treatment costs and improved long-term quality of life for kidney disease patients.


 

Article Details

How to Cite
narkbunnum, warawut, สุขประเสริฐ อ., เอเว่นส์ อ., สัตย์ซื่อ อ., ทิจันธุง อ., & หินเธาว์ ก. (2024). Development and Performance Comparison of Models for Screening Randomly At-Risk Patients with Kidney Disease Using Data Mining Techniques: การพัฒนาและการเปรียบเทียบประสิทธิภาพของตัวแบบสำหรับการคัดกรองผู้ป่วยกลุ่มที่สุ่มเสี่ยงเป็นโรคไต ด้วยเทคนิคการทำเหมืองข้อมูล. Journal of Applied Information Technology, 10(1), 153–167. retrieved from https://ph02.tci-thaijo.org/index.php/project-journal/article/view/251780
Section
Articles

References

เอกสารอ้างอิง

Chronic Kidney Disease Initiative. (n.d.). The page you were looking for has moved. https://www.cdc.gov/kidneydisease/basics.html

Abbafati, C., Abbas, K. M., Abbasi, M., Abbasifard, M., Abbasi-Kangevari, M., Abbastabar, H., Abd-Allah, F., Abdelalim, A., Abdollahi, M., Abdollahpour, I., Abedi, A., Abedi, P., Abegaz, K. H., Abolhassani, H., Abosetugn, A. E., Aboyans, V., Abrams, E. M., Abreu, L. G., Abrigo, M. R. M., … Murray, C. J. L. (2020). Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396(10258), 1204–1222. https://doi.org/10.1016/S0140-6736(20)30925-9

โรงพยาบาลพระรามเก้า. (2563, 11 มีนาคม). โรคไตเรื้อรัง. Https://Www.Praram9.Com/. https://www.praram9.com/โรคไตเรื้อรัง-2

Suriyong, P., Ruengorn, C., Shayakul, C., Anantachoti, P., & Kanjanarat, P. (2022). Prevalence of chronic kidney disease stages 3–5 in low- and middle-income countries in Asia: A systematic review and meta-analysis. PLOS ONE, 17(2), e0264393. https://doi.org/10.1371/JOURNAL.PONE.0264393

Jin, D., Sergeeva, E., Weng, W. H., Chauhan, G., & Szolovits, P. (2021). Explainable Deep Learning in Healthcare: A Methodological Survey from an Attribution View. WIREs Mechanisms of Disease, 14(3). https://doi.org/10.1002/wsbm.1548

Kaur, P., Sharma, M., & Mittal, M. (2018). Big Data and Machine Learning Based Secure Healthcare Framework. Procedia Computer Science, 132, 1049–1059. https://doi.org/10.1016/J.PROCS.2018.05.020

Tomar, D., & Agarwal, S. (2013). A survey on Data Mining approaches for Healthcare. International Journal of Bio-Science and Bio-Technology, 5(5), 241–266. https://doi.org/10.14257/ijbsbt.2013.5.5.25

อนุพงศ์ สุขประเสริฐ. (2563). คู่มือการทำเหมืองข้อมูลด้วยโปรแกรม RapidMiner Studio (3rd ed.). สาขาวิชาคอมพิวเตอร์ธุรกิจ คณะการบัญชีและการจัดการ มหาวิทยาลัยมหาสารคาม.

Han, J., Kamber, M., & Pei, J. (2012). 8 - Classification: Basic Concepts. In J. Han, M. Kamber, & J. Pei (Eds.), Data Mining (Third Edition) (pp. 327–391). Morgan Kaufmann. https://doi.org/https://doi.org/10.1016/B978-0-12-381479-1.00008-3

M, H., & M.N, S. (2015). A Review On Evaluation Metrics For Data Classification Evaluations. International Journal of Data Mining & Knowledge Management Process, 5(2), 01–11. https://doi.org/10.5121/IJDKP.2015.5201

Sanmarchi, F., Fanconi, C., Golinelli, D., Gori, D., Hernandez-Boussard, T., & Capodici, A. (2023). Predict, diagnose, and treat chronic kidney disease with machine learning: a systematic literature review. Journal of Nephrology, 36(4), 1101–1117. https://doi.org/10.1007/S40620-023-01573-4

Polat, H., Danaei Mehr, H., & Cetin, A. (2017). Diagnosis of Chronic Kidney Disease Based on Support Vector Machine by Feature Selection Methods. Journal of Medical Systems, 41(4). https://doi.org/10.1007/S10916-017-0703-X

Salekin, A., & Stankovic, J. (2016). Detection of Chronic Kidney Disease and Selecting Important Predictive Attributes. Proceedings - 2016 IEEE International Conference on Healthcare Informatics, ICHI 2016, 262–270. https://doi.org/10.1109/ICHI.2016.36

Webster, A. C., Nagler, E. V., Morton, R. L., & Masson, P. (2017). Chronic Kidney Disease. The Lancet, 389(10075), 1238–1252. https://doi.org/10.1016/S0140-6736(16)32064-5

Luyckx, V. A., Tonelli, M., & Stanifer, J. W. (2018). The global burden of kidney disease and the sustainable development goals. Bulletin of the World Health Organization, 96(6), 414-422C. https://doi.org/10.2471/BLT.17.206441

Kovesdy, C. P., Furth, S. L., & Zoccali, C. (2017). Obesity and kidney disease: hidden consequences of the epidemic. Journal of Nephrology, 30(1). https://doi.org/10.1007/S40620-017-0377-Y

Xia, J., Wang, L., Ma, Z., Zhong, L., Wang, Y., Gao, Y., He, L., & Su, X. (2017). Cigarette smoking and chronic kidney disease in the general population: a systematic review and meta-analysis of prospective cohort studies. Nephrology Dialysis Transplantation, 32(3), 475–487. https://doi.org/10.1093/NDT/GFW452

data.world (n.d.). The Data Catalog Platform. https://data.world/home

Schröer, C., Kruse, F., & Gómez, J. M. (2021). A Systematic Literature Review on Applying CRISP-DM Process Model. Procedia Computer Science, 181, 526–534. https://doi.org/10.1016/J.PROCS.2021.01.199

ณัฐพล แสนคำ, ธนากร ปุรารัมย์, และทิพวัลย์ แสนคำ. (2560). ระบบสนับสนุนทางการแพทย์สำหรับคัดกรองผู้ป่วยโรคไตเรื้อรังโดยใช้เทคนิคเหมืองข้อมูล. วารสารวิชาการ โรงเรียนนายร้อยพระจุลจอมเกล้า, 15(1), 161–170. https://ph01.tci-thaijo.org/index.php/crma-journal/article/view/243110

IBM. (n.d.). What is Random Forest? https://www.ibm.com/topics/random-forest

Spotfire. (n.d.). Demystifying the Random Forest Algorithm for Accurate Predictions. https://www.spotfire.com/glossary/what-is-a-random-forest

GlurGeek.Com. (2562, 14 กรกฎาคม). KNN หรือ K-Nearest Neighbors คืออะไร. https://www.glurgeek.com/Education/Knn/

สุรวัชร ศรีเปารยะ, และสายชล สินสมบูรณ์ทอง. (2560). การเปรียบเทียบประสิทธิภาพวิธีการจำแนกกลุ่มการเป็นโรคไตเรื้อรัง : กรณีศึกษาโรงพยาบาลแห่งหนึ่งในประเทศอินเดีย. วารสารวิทยาศาสตร์และเทคโนโลยี, 839–853. https://li01.tci-thaijo.org/index.php/tstj/article/view/85101

Hafeez, M. A., Rashid, M., Tariq, H., Abideen, Z. U., Alotaibi, S. S., & Sinky, M. H. (2021). Performance Improvement of Decision Tree: A Robust Classifier Using Tabu Search Algorithm. Applied Sciences 2021, Vol. 11, Page 6728, 11(15), 6728. https://doi.org/10.3390/APP11156728

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). Statistical Learning. In G. James, D. Witten, T. Hastie, & R. Tibshirani (Eds.), An Introduction to Statistical Learning: with Applications in R (pp. 15–57). Springer US. https://doi.org/10.1007/978-1-0716-1418-1_2

Strachna, O., & Asan, O. (2021). Systems Thinking Approach to an Artificial Intelligence Reality within Healthcare: From Hype to Value. ISSE 2021 - 7th IEEE International Symposium on Systems Engineering, Proceedings. https://doi.org/10.1109/ISSE51541.2021.9582546

Sutton, R. T., Pincock, D., Baumgart, D. C., Sadowski, D. C., Fedorak, R. N., & Kroeker, K. I. (2020). An overview of clinical decision support systems: benefits, risks, and strategies for success. Npj Digital Medicine 2020 3:1, 3(1), 1–10. https://doi.org/10.1038/s41746-020-0221-y

Thilly, N., Chanliau, J., Frimat, L., Combe, C., Merville, P., Chauveau, P., Bataille, P., Azar, R., Laplaud, D., Noël, C., & Kessler, M. (2017). Cost-effectiveness of home telemonitoring in chronic kidney disease patients at different stages by a pragmatic randomized controlled trial (eNephro): rationale and study design. BMC Nephrology, 18(1). https://doi.org/10.1186/S12882-017-0529-2

Connell, A., Montgomery, H., Martin, P., Nightingale, C., Sadeghi-Alavijeh, O., King, D., Karthikesalingam, A., Hughes, C., Back, T., Ayoub, K., Suleyman, M., Jones, G., Cross, J., Stanley, S., Emerson, M., Merrick, C., Rees, G., Laing, C., & Raine, R. (2019). Evaluation of a digitally-enabled care pathway for acute kidney injury management in hospital emergency admissions. Npj Digital Medicine 2019 2:1, 2(1), 1–9. https://doi.org/10.1038/s41746-019-0100-6