A Comparison of Apriori and FP-Growth Algorithms with Groceries dataset การเปรียบเทียบประสิทธิภาพอัลกอริทึม Apriori และ FP-Growth ด้วยชุดข้อมูลร้านขายของชำ

Main Article Content

Kritbodin Phiwhorm

Abstract

ABSTRACT


This research aims to 1) study and compare the performance of the Apriori and FP-Growth algorithms in finding frequent itemsets, which is a crucial step in the process of association rules mining, and 2) compare the speed and memory usage of the algorithms in finding frequent itemsets.


The research findings indicate that 1) each algorithm used for discovering frequent itemsets has different advantages and disadvantages depending on there dataset and support threshold used. And 2) experimental comparison of algorithm speeds and memory usage in finding frequent itemsets reveals that the FP-Growth algorithm performs faster than the Apriori algorithm and utilizes less memory. This is because the Apriori algorithm requires multiple scans of the database and generates candidate itemsets, leading to longer processing times. On the other hand, the FP-Growth algorithm scans the database only twice and does not generate candidate itemsets, resulting in faster execution.

Article Details

How to Cite
Phiwhorm, K. (2024). A Comparison of Apriori and FP-Growth Algorithms with Groceries dataset: การเปรียบเทียบประสิทธิภาพอัลกอริทึม Apriori และ FP-Growth ด้วยชุดข้อมูลร้านขายของชำ. Journal of Applied Information Technology, 10(1), 181–191. retrieved from https://ph02.tci-thaijo.org/index.php/project-journal/article/view/253151
Section
Articles

References

เอกสารอ้างอิง

Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Market Basket Analysis using Association Rule Mining. Introduction to Data Mining, 327-352. Boston: Pearson Addison Wesley.

Zhao, Q., & Bhowmick, S. S. (2003). Association rule mining: A survey. Nanyang Technological University, Singapore, 135.

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Proceedings of the 20th VLDB Conference Santiago, Chile, 487–499.

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. ACM Sigmod Record, 29(2), 1–12.

Gulzar, K., Ayoob Memon, M., Mohsin, S. M., Aslam, S., Akber, S. M., & Nadeem, M. A. (2023). An Efficient Healthcare Data Mining Approach Using Apriori Algorithm: A Case Study of Eye Disorders in Young Adults. Information, 14(4), 203; https://doi.org/10.3390/info14040203

Aldino, A. A., Pratiwi, E. D., Sintaro, S., & Putra, A. D. (2021). Comparison of market basket analysis to determine consumer purchasing patterns using fp-growth and apriori algorithm. 2021 International Conference on Computer Science, Information Technology, and Electrical Engineering (ICOMITEE), 29–34.

Wicaksono, D., JAMBAK, M. I., & SAPUTRA, D. M. (2020). The comparison of apriori algorithm with preprocessing and FP-growth algorithm for finding frequent data pattern in association rule. Sriwijaya International Conference on Information Technology and Its Applications (SICONIAN 2019), 315–319. https://doi.org/10.2991/aisr.k.200424.047

Srinadh, V. (2022). Evaluation of Apriori, FP growth and Eclat Association rule mining algorithms. International Journal of Health Sciences, (II), 7475–7485.

Dwiputra, D., Widodo, A. M., Akbar, H., & Firmansyah, G. (2023). Evaluating the Performance of Association Rules in Apriori and FP-Growth Algorithms: Market Basket Analysis to Discover Rules of Item Combinations. Journal of World Science, 2(8), 1229–1248.

DEDHIA, H. (2022). Groceries dataset. https://www.kaggle.com/datasets/heeraldedhia/groceries-dataset/data.

Han, J., Kamber, M., & Mining, D. (2006). Concepts and techniques. Morgan Kaufmann, 340, 94104-3205.

Patil, M., & Patil, T. (2022). Apriori Algorithm against Fp Growth Algorithm: A Comparative Study of Data Mining Algorithms. Available at SSRN 4113695.

Nasreen, S., Azam, M. A., Shehzad, K., Naeem, U., & Ghazanfar, M. A. (2014). Frequent Pattern Mining Algorithms for Finding Associated Frequent Patterns for Data Streams: A Survey. Procedia Computer Science, 37, 109–116. https://doi.org/10.1016/j.procs.2014.08.019.