A Note on the Transmuted Generalized Inverted Exponential Distribution with Application to Reliability Data


  • Idika E. Okorie School of Mathematics, University of Manchester, Manchester, United Kingdom
  • Anthony C. Akpanta Department of Statistics, Abia State University, Uturu, Nigeria


Reliability, unimodal, bathtub, maximum likelihood estimation


Based on the transmuted generalized inverted exponential (TGIE) distribution (Elbatal 2013), Khan (2018) revisited the TGIE distribution with an illustrative application to a reliability data-set. Here, we revisit the data application and discuss the inadequacy of the TGIE distribution to the applied data-set.


Download data is not yet available.


Aarset MV. How to identify a bathtub hazard rate. IEEE Transactions on Reliability. 1987; 36: 106-108.

Abouammoh AM, Alshingiti AM. Reliability estimation of generalized inverted exponential distribution. J Stat Comput Simulat. 2009; 79: 1301-1315.

Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1974; 19: 716-23.

Bursa N, Ozel G. The exponentiated Kumaraswamy-power function distribution. Hacettepe J Math Stat. 2017; 46: 277-292.

Elbatal I. Transmuted generalized inverted exponential distribution. Econ Qual Contr. 2013; 28:125-133.

Gupta RD, Kundu D. Generalized exponential distribution: different method of estimations. J Stat ComputSimulat. 2001; 69: 315-337.

Hurvich CM, Tsai CL. Regression and time series model selection in small samples. Biometrika. 1989; 76: 297-307.

Javed M, Nawaz T, Irfan M. The Marshall-Olkin kappa distribution: properties and applications. J King Saud University-Science. 2018: 1-8

Khan MS. Transmuted generalized inverted exponential distribution with application to reliability data. Thail Stat. 2018; 16:14-25.

Kolmogorov A. Sulla determinazione empirica di una lgge di distribuzione. Inst Ital Attuari Giorn 1933; 4: 83-91.

Korkmaz MÇ, Altun E, Yousof HM, Afify AZ, Nadarajah S. The Burr X Pareto Distribution: Properties, Applications and VaR Estimation. J Risk Financ Manag. 2017; 11: 1-16.

Nassar M, Afify AZ, Dey S, Kumar D. A new extension of weibull distribution: Properties and different methods of estimation. J Comput Appl Math. 2017; 336: 439-457.

Oguntunde P, Adejumo O. The transmuted inverse exponential distribution. Int J Adv Stat Probab. 2014; 3: 1-7.

Okorie IE, Akpanta AC, Ohakwe J, Chikezie DC. The modified power function distribution. Cogent Mathematics. 2017a; 4(1), DOI: 10.1080/23311835.2017.1319592.

Okorie IE, Akpanta AC, Ohakwe J, Chikezie DC. The extended Erlang-truncated exponential distribution: properties and application to rainfall data. Heliyon. 2017b; 3: DOI:10.1016/ j.heliyon.2017.e00296

Scheffé H. Statistical inference in the non-parametric case. Ann Math Stat. 1943; 14: 305-332.

Schwarz G. Estimating the dimension of a model. Ann Stat. 1978; 6: 461-464.

Shaw WT, Buckley IR. The alchemy of probability distributions: beyond Gram-Charlier&Cornish-Fisher expansions, and skew-normal or kurtotic-normal distributions. Proceeding of IMA Conference on Computational Finance; 2007 March 23;
De Morgan House, London.

Smirnoff N. Sur les écarts de la courbe de distribution empirique. Matematicheskii Sbornik. 1939; 48: 3-26.

Tahir M, Alizadeh M, Mansoor M, Cordeiro GM, Zubair M. The Weibull-power function distribution with applications. Hacet J Math Stat. 2014; 45: 245-265.

Wolfowitz J. Non-parametric statistical inference. Proceedings of the Berkeley Symposium on mathematical statistics and probability; 1949; Berkeley, CA: University of California Press; 1948; 93-113.

Zakerzadeh H, Mahmoudi E. A new two parameter lifetime distribution: model and properties. arXiv:1204.4248. 2012.