Parameter Estimation for H-self-similar Stable Fields
Keywords:
H-sssi fields, stable fields, self-similarity parameter estimator, stability parameter estimator, negative power variationsAbstract
In this work, we are interested in -sssi - stable fields, that is, in stable random fields that are self-similar with parameter $H$ and have stationary increments. We give two estimators of the stability and the self-similar indices based on -negative power variations with The consistency of those two estimators are also proved. We illustrate these convergences with some examples: Levy fractional Brownian field, well-balanced linear fractional stable field and Takenaka random field.
References
Bierme H, Bonami A, Leon JR. Central limit theorems and quadratic variations in term of spectral density. Electron J Prob. 2011; 16: 362-395.
Bonami A, Estrade A. Anisotropic analysis of some Gaussian models. J Fourier Anal Appl. 2003; 9: 215-36.
Cohen S, Istas, J. Fractional fields and applications. Berlin: Springer-Verlag; 2013.
Constantine AG, Hall P. Characterizing surface smoothness via estimation of effective fractal dimension. J Roy Stat Soc Ser B. 1994; 56(1): 97-113.
Dang TTN. Estimation of the multifractional function and the stability index of linear multifractional stable processes. ESAIM Prob Stat. 2020; 24: 1-20.
Dang TTN, Istas J. Estimation of the Hurst and the stability indices of a H-self-similar stable process. Electronic J Stat. 2017; 11: 4103-4150.
Dubuc B, Zucker SW, Tricot C, Quiniou JF, Wehbi D. Evaluating the fractal dimension of surfaces. Proc R SocA: Math Phys Eng Sci. 1989; 425(1868): 113-127.
Feuerverger A, Hall P, Wood ATA. Estimation of fractal index and fractal dimension of a Gaussian process by counting the number of level crossings. J Time Ser Anal. 1994; 15(6): 587-606.
Hall P, Wood ATA. On the performance of box counting estimators of fractal dimension. Biometrika. 1993; 80(1): 246-252.
Istas J, Lang G. Quadratic variations and estimation of the Hoder index of a Gaussian process. Ann. Inst. Henri Poincare, 1997; 33(4): 407-436. ´
Kent JT, Wood ATA. Estimating the fractal dimension of a locally self-similar Gaussian process by using increments. J Roy Stat Soc Ser B. 1997; 59(3): 679-699.
Peitgen HO, Saupe D. The science of fractal images. New York: Springer-Verlag; 1988.
Samorodnitsky G, Taqqu MS. Stable non-Gaussian random processes. New York: Chapmann and Hall; 1994.
Taylor CC, Taylor SJ. Estimating the dimension of a fractal. J Roy Stat Soc Ser B. 1991; 53(2): 353-364.
Taylor CC, Taylor SJ. Fractal analysis of surface roughness by using spatial data. J Roy Stat Soc Ser B. 1999; 61(1): 3-37.
Thomas TR. Rough surfaces. London: Longman; 1982.
Thomas TR, Thomas AP. Fractals and engineering surface roughness. Surf Topogr. 1988; 1(2): 143-152.
Wilson TH. Some distinctions between self-similar and self-affine estimates of fractal dimension with case history. Math Geology. 2000; 32: 319-335.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.