Parameter Estimation for H-self-similar Stable Fields

Authors

  • Dang Thi To Nhu University of Economics, The University of Danang, Danang city, Vietnam

Keywords:

H-sssi fields, stable fields, self-similarity parameter estimator, stability parameter estimator, negative power variations

Abstract

In this work, we are interested in gif.latex?H-sssi gif.latex?\alpha- stable fields, that is, in stable random fields that are self-similar with parameter $H$ and have stationary increments. We give two estimators of the stability and the self-similar indices based on gif.latex?\beta-negative power variations with 2<\beta<0. The consistency of those two estimators are also proved. We illustrate these convergences with some examples: Levy fractional Brownian field, well-balanced linear fractional stable field and Takenaka random field.

References

Bierme H, Bonami A, Leon JR. Central limit theorems and quadratic variations in term of spectral density. Electron J Prob. 2011; 16: 362-395.

Bonami A, Estrade A. Anisotropic analysis of some Gaussian models. J Fourier Anal Appl. 2003; 9: 215-36.

Cohen S, Istas, J. Fractional fields and applications. Berlin: Springer-Verlag; 2013.

Constantine AG, Hall P. Characterizing surface smoothness via estimation of effective fractal dimension. J Roy Stat Soc Ser B. 1994; 56(1): 97-113.

Dang TTN. Estimation of the multifractional function and the stability index of linear multifractional stable processes. ESAIM Prob Stat. 2020; 24: 1-20.

Dang TTN, Istas J. Estimation of the Hurst and the stability indices of a H-self-similar stable process. Electronic J Stat. 2017; 11: 4103-4150.

Dubuc B, Zucker SW, Tricot C, Quiniou JF, Wehbi D. Evaluating the fractal dimension of surfaces. Proc R SocA: Math Phys Eng Sci. 1989; 425(1868): 113-127.

Feuerverger A, Hall P, Wood ATA. Estimation of fractal index and fractal dimension of a Gaussian process by counting the number of level crossings. J Time Ser Anal. 1994; 15(6): 587-606.

Hall P, Wood ATA. On the performance of box counting estimators of fractal dimension. Biometrika. 1993; 80(1): 246-252.

Istas J, Lang G. Quadratic variations and estimation of the Hoder index of a Gaussian process. Ann. Inst. Henri Poincare, 1997; 33(4): 407-436. ´

Kent JT, Wood ATA. Estimating the fractal dimension of a locally self-similar Gaussian process by using increments. J Roy Stat Soc Ser B. 1997; 59(3): 679-699.

Peitgen HO, Saupe D. The science of fractal images. New York: Springer-Verlag; 1988.

Samorodnitsky G, Taqqu MS. Stable non-Gaussian random processes. New York: Chapmann and Hall; 1994.

Taylor CC, Taylor SJ. Estimating the dimension of a fractal. J Roy Stat Soc Ser B. 1991; 53(2): 353-364.

Taylor CC, Taylor SJ. Fractal analysis of surface roughness by using spatial data. J Roy Stat Soc Ser B. 1999; 61(1): 3-37.

Thomas TR. Rough surfaces. London: Longman; 1982.

Thomas TR, Thomas AP. Fractals and engineering surface roughness. Surf Topogr. 1988; 1(2): 143-152.

Wilson TH. Some distinctions between self-similar and self-affine estimates of fractal dimension with case history. Math Geology. 2000; 32: 319-335.

Downloads

Published

2023-06-28

How to Cite

Thi To Nhu, D. . (2023). Parameter Estimation for H-self-similar Stable Fields. Thailand Statistician, 21(3), 484–497. Retrieved from https://ph02.tci-thaijo.org/index.php/thaistat/article/view/250055

Issue

Section

Articles