Efficient Estimation of the Burr XII Distribution in Presence of Progressive Censored Samples with Binomial Random Removal

Authors

  • Amal S. Hassan Department of Mathematical Statistics, Faculty of Graduate Studies for Statistical Research (FGSSR), Cairo University, Egypt
  • Salwa M. Assar Department of Mathematical Statistics, Faculty of Graduate Studies for Statistical Research (FGSSR), Cairo University, Egypt
  • Kareem A. Ali Department of Mathematical Statistics, Faculty of Graduate Studies for Statistical Research (FGSSR), Cairo University, Egypt

Keywords:

Burr type XII distribution, least squares estimator, uniform minimum variance unbiased estimator, maximum product spacing estimator, progressive type II censored samples

Abstract

A progressive type II (PTII) censoring schemes has a widely application in lifetime and reliability studies. This work investigates the optimal estimator of the probability density and the cumulative distribution functions of the Burr type XII distribution based on PTII censoring samples. The uniformly minimum variance unbiased, maximum likelihood, maximum product spacing, least squares, and weighted least squares estimators are obtained. The closed form expressions for maximum likelihood and uniform minimum variance unbiased estimator, associated mean squared errors and  moment are derived. A simulation study is used to demonstrate theoretical achievements. The outcomes of simulation study showed that the maximum product spacing estimates are preferred over all the other estimates. We examine one real data set to demonstrate the applicability and relevance of the proposed estimators. The results of a real-life analysis reveal that proposed estimators outperform some other competitive models. 

References

Abd-Elfattah AM, Hassan AS, Nassr SG. Estimation in step-stress partially accelerated life tests for the Burr type XII distribution using type I censoring. Stat Methodol. 2008; 5: 502-514.

Alizadeh M, Bagheri SF, Baloui Jamkhaneh E, Nadarajah S. Estimates of the PDF and the CDF of the exponentiated Weibull distribution. Braz J Prob Stat. 2015a; 29(3): 695-716.

Alizadeh M, Rezaei S, Bagheri, SF, Nadarajah S. Efficient estimation for the generalized exponential distribution. Stat Pap. 2015b; 56(4): 1015-1031.

Asrabadi BR. Estimation in the Pareto distribution. Metrika. 1990; 37(1): 199-205.

Bagheri SF, Alizadeh M, Baloui Jamkhaneh E, Nadarajah S. Evaluation and comparison of estimations in the generalized exponential-Poisson distribution. J Stat Comput Simul. 2014; 84(11): 2345-2360.

Bagheri SF, Alizadeh M, Nadarajah S. Efficient estimation of the PDF and the CDF of the exponentiated Gumbel distribution. Commun Stat: Simul Comput. 2016; 45(1): 339-361.

Balakrishnan N, Aggarwala R. Progressive Censoring: Theory, Methods and Applications. Boston: Birkhäuser; 2000.

Bantan R, Hassan AS, Almetwally E, Elgarhy M, Jamal F, Chesneau C. Elsehetry M. Bayesian analysis in partially accelerated life tests for weighted Lomax distribution. Comput Mater Contin. 2021; 68(3): 2859-2875. DOI:10.32604/cmc.2021.015422.

Cheng RCH, Amin NAK. Estimating parameters in continuous univariate distributions with a shifted origin. J R Stat Soc B. 1983, 45(3): 394-403.

Chou CY, Cheng PH, Liu HR. Economic statistical design of X charts for non-normal data by considering quality loss. J Appl Stat. 2000; 27 (8): 939-951.

Dey S, Dey T. Statistical Inference for the Rayleigh distribution under progressively Type-II censoring with binomial removal. Appl Math Model. 2014; 38(3): 974-982.

Dixit UJ, Nooghabi MJ. Efficient estimation in the Pareto distribution. Stat Methodol. 2010; 7(6): 687-691.

Dogru FZ, Arslan O. Optimal B-robust estimators for the parameters of the Burr XII distribution. J Stat Comput Simul. 2016; 86(6): 1133-1149.

Ghitany ME, Al-Awadhi S. Maximum likelihood estimation of Burr XII distribution parameters under random censoring. J Appl Stat. 2002; 29(7): 955-965.

Gradshteyn IS, Ryzhik IM. Table of Integrals, Series, and Products. New York: Academic Press; 2000.

Gunasekera S. Inference for the Burr XII reliability under progressive censoring with random removals. Math Comput Simul. 2018; 144: 182-195.

Hassan AS, Assar MS, Yahya M. Estimation of P[Y< X] for Burr Type XII distribution under several modifications for ranked set sampling. Aust J Basic Appl Sci. 2015; 9(1): 124-140.

Hassan NJ, Hadad MJ, Nasar AH. Bayesian shrinkage estimator of Burr XII distribution. Int J Math Math Sci. 2020, https://doi.org/10.1155/2020/7953098.

Hossain AM, Nath SK. Estimation of parameters in the presence of outliers for a Burr XII distribution. Commun Stat - Theory Methods. 1997; 26(3): 637-652.

Maiti SS, Mukherjee I. On estimation of the PDF and CDF of the Lindley distribution, Commun Stat - Simul Comput. 2018; 47(5): 1370-1381.

Maleki F, Deiri E. Efficient estimation of the PDF and the CDF of the Frechet distribution. Ann Data Sci. 2017; 4(2): 211-225.

Maurya RK, Tripathi YM, Rastogi MK, Asgharzadeh A. Parameter estimation for a Burr XII distribution under progressive censoring. Am J Math Manag Sci. 2017; 36(3): 259-267.

Murthy DNP, Xie M, Jiang R. Weibull Models, Series in Probability and Statistics. Hoboken, New Jersey: John Wiley and Sons; 2004.

Ng HKT, Luo L, Hu Y, Duan F. Parameter estimation of three-parameter Weibull distribution based on progressively Type-II censored samples. J Stat Comput Simul. 2012; 82(11): 1661-1678.

Qin X, Gui W. Statistical inference of Burr-XII distribution under progressive Type-II censored competing risks data with binomial removals. J Comput Appl Math. 2020; 378(2):112922, https://doi:10.1016/j.cam.2020.112922.

Singh RK, Singh SK, Singh U. Maximum product spacings method for the estimation of parameters of generalized inverted exponential distribution under progressive type II censoring. J Stat Manag Syst. 2016; 19(2): 219-245.

Soliman AA, Abd Ellah AH, Abou-Elheggag NA, Modhesh AA. Estimation from Burr type XII distribution using progressive first-failure censored data. J Stat Comput Simul. 2013; 83(12): 2270-2290.

Tadikamalla PR. A look at the Burr and related distributions. Int Stat Rev. 1980; 48(3): 337-344.

Tripathi YM, Mahto AK, Dey S. Efficient estimation of the PDF and the CDF of a generalized logistic distribution. Ann Data Sci. 2017; 4(1): 63-81.

Tse SK, Yang C, Yuen HK. Statistical analysis of Weibull distributed lifetime data under type-II progressive censoring with binomial removals. J Appl Stat. 2000; 27(8):1033-1043.

Watkins AJ. An algorithm for maximum likelihood estimation in the three parameter Burr XII distribution. Comput Stat Data Anal. 1999; 32:19-27.

Wu SJ, Chang CT. Parameter estimations based on exponential progressive type II censored data with binomial removals. Int J Inf Manag Sci. 2002; 13(3): 37-46

Wu SJ, Chen YJ, Chang CT. Statistical inference based on progressively censored samples with random removals from the Burr type XII distribution. J Stat Comput Simul. 2007; 77(1): 19-27.

Yuen HK, Tse SK. Parameters estimation for Weibull distributed lifetimes under progressive censoring with random removals. J Stat Comput Simul. 1996; 55: 57-71.

Downloads

Published

2023-12-28

How to Cite

S. Hassan, A. ., M. Assar, S. ., & A. Ali, K. . (2023). Efficient Estimation of the Burr XII Distribution in Presence of Progressive Censored Samples with Binomial Random Removal. Thailand Statistician, 22(1), 121–141. retrieved from https://ph02.tci-thaijo.org/index.php/thaistat/article/view/252227

Issue

Section

Articles