Intercept-only Model under Non-normality

Authors

  • Bouchafaa Asma Laboratoire MSTD, Faculty of Mathematics USTHB, Algiers, Algeria
  • Djeddour-Djaballah Khedidja Laboratoire MSTD, Faculty of Mathematics USTHB, Algiers, Algeria
  • Benjrada Mohammed Essalih Laboratoire MSTD, Faculty of Mathematics USTHB, Algiers, Algeria

Keywords:

Regression, estimation, exponential distribution, intercept-only, convergence

Abstract

In this paper, we consider a linear regression intercept-only model under the hypothesis of nonnormality. Generally, the errors are independent and normally distributed. In our case, we assume the errors are independent and follow an exponential law. We prove the consistency and establish the asymptotic distribution of the maximum likelihood estimator for the parameter of the interceptonly model. Numerical simulations confirm the accuracy of this estimator. We notably exhibit the advantages of the maximum likelihood estimator compared to the classical ordinary least square estimator. Finally, we applied the approach to a data of a real-life example, namely the Canadian lynx data.

References

Azais JM, Bardet JM. Le modle linaire par l’exemple: rgression, analyse de la variance et plans d’expriences illustres avec R, SAS et Splus. Dunod; 2005.

Bangdiwala SI. Regression: simple linear. Int J Inj Control Sa. 2018; 25(1):113-115.

Djaballah-Djeddour K, Tazerouti M. Test for Linearity in Non-Parametric Regression Models. Aust J Stat. 2015; 51(1):16-34.

Diaz-Garcia JA, Galea Rojas M, Leiva-Sanchez V. Influence diagnostics for elliptical multivariate linear regression models. Commun Stat - Theory Method 2003; 32(3):625-641.

Ferreira JT, Steel FJ. A new class of skewed multivariate distributions with applications to regression analysis. Stat Sinica. 2007; 505-529.

Galea M, Paula GA, Bolfarine H. Local influence in elliptical linear regression models. The Statistician. 1997; 46(1):71-79.

Gaso DV, Berger AG, Ciganda VS. Predicting wheat grain yield and spatial variability at field scale

using a simple regression or a crop model in conjunction with Landsat images. Comput Electron Agr. 2019; 159(1): 75-83

Huber PJ. Robust Statistics. Wiley, New York. 1981.

Qamarul Islam M, Tiku ML. Multiple linear regression model under nonnormality. Commun Stat-Theory Methods. 2004; 33(10):2443-2467.

Sazak HS. Regression analysis with a stochastic design variable. Int Stat Rev. 2006; 74(1): 77-88.

Sutradhar BC, Mir MA. Estimation of the parameters of a regression model with a multivariate t error variable. Commun Stat-Theory Methods. 1986; 15(2):429-450.

Tiku ML, Tan WY, Balakrishnan N. Robust Inference. New York Marcel Dekker. 1986.

Tiku ML, Qamarul Islam M, Sazak HS. Estimation in bivariate nonnormal distributions with stochastic variance functions. Comput Stat Data An. 2008; 52(3): 1728-1745.

Tiku ML, Islam MQ, Selcuk AS. Non-normal regression.II. Symmetric distributions. Commun Stat-Theory Methods. 2001; 30(1):1021-1045.

Zellner A. Bayesian and non-Bayesian analysis of the regression model with multivariate Student-t

error terms. J Am Stat Assoc. 1976; 71(354):400-405.

Lim KS. Canadian lynx data. Encyclopedia of Mathematics. Available from: http://encyclopediaofmath.org/index.php?title=Canadian lynx data&oldid=46191.

Downloads

Published

2024-03-31

How to Cite

Asma, B. ., Khedidja, D.-D. ., & Mohammed Essalih, B. . (2024). Intercept-only Model under Non-normality. Thailand Statistician, 22(2), 348–362. retrieved from https://ph02.tci-thaijo.org/index.php/thaistat/article/view/253444

Issue

Section

Articles