Comparing Some Iterative Methods of Parameter Estimation for Progressively Censored Lomax Data
Keywords:
Lomax distribution, progressive censoring, maximum likelihood, symmetric and asymmetric loss functionsAbstract
Based on Progressively Type-II censored samples, the maximum likelihood estimator, the uniformly minimum variance unbiased estimator (UMV U), and the Bayes estimators for the shape parameter and the hazard function of the Lomax model are derived. The Bayesian estimators are obtained based on symmetric (squared error, absolute difference, and logarithmic loss functions) and
asymmetric (LINEX, General Entropy, and Logarithmic) loss functions. A real data example consists of data from Iowa 65+ Rural Health Study (RHS) is used to illustrate the proposed methods
References
Abd-Elfattah AM, Alaboud FM , Alharby AH. On sample size estimation for Lomax distribution.
Aust J Basic Appl Sci. 2007; 1(4): 373-378.
Aggarwala R, Balakrishnan N. Maximum likelihood estimation of the Laplace parameters based on
progressive Type-II censored samples. New York. CRC Press; 2019.
Arnold BC, Press SJ. Bayesian inference for Pareto populations. J Econometrics. 1983; 21(3):287-
Asgharzadeh A, Valiollahi R. Estimation of the scale parameter of the Lomax distribution under
progressive censoring. Int J Stat Econ. 2010; 6(11): 37-48.
Balakrishnan N, Aggarwala R. Progressive censoring: theory, methods, and applications. New York:
Springer; 2000.
Balakrishnan N, Cramer E. The art of progressive censoring. New York: Birkauser; 2014.
Balakrishnan N, Sandhu RA. A simple simulational algorithm for generating progressive Type-II
censored samples. J Am Stat. 1995; 49(2): 229-230.
Box GE, Tiao GC. Bayesian inference in statistical analysis. New York: John Wiley & Sons; 2011.
Brown L. In admissibility of the usual estimators of scale parameters in problems with unknown
location and scale parameters. Ann Math Stat. 1968; 39(1): 29-48.
Bryson MC. Heavy-tailed distributions: properties and tests. Technometrics. 1974; 16(1): 61-68.
Chahkandi M, Ganjali M. On some lifetime distributions with decreasing failure rate. Comput Stat
Data An. 2009; 53(12): 4433-4440.
Childs A, Balakrishnan N, Moshref M. Order statistics from non-identical right-truncated Lomax
random variables with applications. Stat Pap. 2001; 42(2): 187-206.
Cornoni-Huntley J. Established populations for epidemiologic studies of the elderly: Resource data
book. National Institute on Aging; 1986.
Cramer E, Schmiedt AB. Progressively Type-II censored competing risks data from Lomax distributions. Comput Stat Data An. 2011; 55(3): 1285-1303.
Dey DK, Ghosh M, Srinivasan C. Simultaneous estimation of parameters under entropy loss. J Stat
Plan Infer. 1986; 15: 347-363.
Feynman RP. Mr. Feynman goes to Washington. Eng & sci. 1987; 51(1): 6-22.
Haff LR. Minimax estimators for a multinormal precision matrix. J Multivariate Anal. 1977; 7(3):
-385.
Haff LR. Estimation of the inverse covariance matrix: Random mixtures of the inverse Wishart matrix
and the identity. Ann Stat. 1979; 1264-1276.
Haff LR. Empirical Bayes estimation of the multivariate normal covariance matrix. Ann Stat. 1980;
(3): 586-597.
Helu A, Samawi H. The Inverse Weibull Distribution as a Failure Model Under Various Loss Functions and Based on Progressive First-Failure Censored Data. Qual Technol Quant M. 2015;
(4): 517-535.
Howlader HA, Hossain AM. Bayesian survival estimation of Pareto distribution of the second kind
based on failure-censored data. Comput Stat Data An. 2002; 38(3): 301-314.
Ighodaro A, Santner T. Ridge type estimators of multinomial cell probabilities. New York: Academic
Press; 1982.
Johnson NL, Kotz S, Balakrishnan N. Continuous Univariate Distributions. New York: John Wiley
& Sons; 1994.
Li X, Shi Y, Wei J, Chai J. Empirical Bayes estimators of reliability performances using LINEX loss
under progressively type-II censored samples. Math Comput Simulat. 2007; 73(5): 320-326.
Lomax KS. Business failures: Another example of the analysis of failure data. J Am Stat Assoc.
; 49(268): 847-852.
Musleh R, Helu A, Samawi H. Inference on P (X ¡ Y) in bivariate Lomax model. Electron J Appl Stat
An. 2019; 12(3): 619-636.
Norstrom JG. The use of precautionary loss functions in risk analysis. IEEE. 1996; 45(3): 400-403.
Pandey BN. Testimator of the scale parameter of the exponential distribution using LINEX loss function. Commun Stat Theory. 1997; 26(9): 2191-2202.
Pandey BN, Singh BP, Mishra CS. Bayes estimation of shape parameter of classical pareto distribution under linex loss function. Commun Stat Theory. 1996; 25(12): 3125-3145.
Parsian A, Krimani S. Estimation under linex loss function. Stat Text and Monograph. New York:
Cambridge University Press; 2002.
Ren C, Sun D, Dey DK. Bayesian and frequentist estimation and prediction for exponential distributions. J Stat Plan Infer. 2006; 136(9): 2873-2897.
Stein C, James W. Estimation with quadratic loss. Proc. 4th Berkeley Symp. Math Stat Prob; 1961.
Varian HR. A Bayesian approach to real estate assessment. Studies in Bayesian econometric and
statistics in Honor of Leonard J. Savage. New York: McGraw-Hill; 1975. p. 195-208.
Wingo DR. Maximum likelihood estimation of Burr XII distribution parameters under type II censoring. Micro Reli. 1993; 33(9): 1251-1257.
Wu SJ. Estimation of the two-parameter bathtub-shaped lifetime distribution with progressive censoring. J Appl Stat. 2008; 35(10): 1139-1150.
Zellner A. Bayesian estimation and prediction using asymmetric loss functions. J Am Stat Assoc.
; 81(394): 446-451.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.