Robust Inference for the Skew Normal Regression Model Under Type II Censoring

Authors

  • Iklim Gedik Balay Ankara Yıldırım Beyazıt University, Department of Banking and Finance, Ankara, Turkey
  • Birdal Senoglu Ankara University, Department of Statistics, Ankara, Turkey

Keywords:

Reliability, modified maximum likelihood estimators, Monte Carlo simulation, skewness, censored samples

Abstract

In this paper, we concentrate on statistical inference for the regression model with skew normal (SN) distributed error terms under type-II censoring. Iteratively reweighting algorithm (IRA) is used for computing maximum likelihood (ML) estimates of the model parameters, see Arslan (2009). We also use the non-iterative modified maximum likelihood (MML) methodology to obtain the explicit
estimators of the model parameters, see Tiku (1967). Additionally, confidence intervals for the model parameters are constructed based on the proposed estimators. Monte Carlo simulation study is used to compare the efficiencies of the ML and MML estimators, and also the performances of the corresponding confidence intervals.

References

Azais JM, Bardet JM. Le modle linaire par l’exemple: rgression, analyse de la variance et plans d’expriences illustres avec R, SAS et Splus. Dunod; 2005.

Bangdiwala SI. Regression: simple linear. Int J Inj Control Sa. 2018; 25(1): 113-115.

Djaballah-Djeddour K, Tazerouti M. Test for Linearity in Non-Parametric Regression Models. Aust J Stat. 2015; 51(1): 16-34.

Diaz-Garcia JA, Galea Rojas M, Leiva-Sanchez V. Influence diagnostics for elliptical multivariate linear regression models. Commun Stat Theory. 2003; 32(3): 625-641.

Ferreira JT, Steel FJ. A new class of skewed multivariate distributions with applications to regression analysis. Stat Sinica. 2007; 505-529.

Galea M, Paula GA, Bolfarine H. Local influence in elliptical linear regression models. The Statistician. 1997; 46(1): 71-79.

Gaso DV, Berger AG, Ciganda VS. Predicting wheat grain yield and spatial variability at field scale using a simple regression or a crop model in conjunction with Landsat images. Comput Electron Agr. 2019; 159(1): 75-83

Huber PJ. Robust Statistics. New York: John Wiley & Sons; 1981.

Qamarul Islam M, Tiku ML. Multiple linear regression model under nonnormality. Commun Stat Theory. 2004; 33(10): 2443-2467.

Sazak HS. Regression analysis with a stochastic design variable. Int Stat Rev. 2006; 74(1): 77-88.

Sutradhar BC, Mir MA. Estimation of the parameters of a regression model with a multivariate t error variable. Commun Stat Theory. 1986; 15(2): 429-450.

Tiku ML, Tan WY, Balakrishnan N. Robust Inference. New York: Marcel Dekker. 1986.

Tiku ML, Qamarul Islam M, Sazak HS. Estimation in bivariate nonnormal distributions with stochastic variance functions. Comput Stat Data An. 2008; 52(3): 1728-1745.

Tiku ML, Islam MQ, Selcuk AS. Non-normal regression.II.Symmetric distributions. Commun Stat

Theory. 2001; 30(1): 1021-1045.

Zellner A. Bayesian and non-Bayesian analysis of the regression model with multivariate Student-t error terms. J Am Stat Assoc. 1976; 71(354): 400-405.

Lim KS. Canadian lynx data. Encyclopedia of Mathematics. Available from: http://encyclopediaofmath.org/index.php?title=Canadian lynx data&oldid=46191

Downloads

Published

2024-06-29

How to Cite

Gedik Balay, I. ., & Senoglu, B. . (2024). Robust Inference for the Skew Normal Regression Model Under Type II Censoring. Thailand Statistician, 22(3), 547–564. Retrieved from https://ph02.tci-thaijo.org/index.php/thaistat/article/view/254767

Issue

Section

Articles