Log-Product-Type Estimator for Estimation of Population Variance Using Auxiliary Information

Authors

  • Prabhakar Mishra Department of Statistics, Banaras Hindu University, Varanasi, India
  • Ashish Sharma School of Business, UPES University, Dehradun, India
  • Nitesh Kumar Adichwal School of Management, IILM University, Greater Noida, Uttar Pradesh, India
  • Sakshi Rai Department of Statistics, Banaras Hindu University, Varanasi, India
  • Rajesh Singh Department of Statistics, Banaras Hindu University, Varanasi, India

Keywords:

Auxiliary variable, variance, SRSWOR, mean square error, bias

Abstract

This paper proposed a log product type estimator for estimating population variance under simple random sampling without replacement (SRSWOR) using auxiliary information. We have calculated the mean square error (MSE) and bias expressions up to the first order of approximation. To substantiate the result, an empirical study has been performed using three real population data sets. The properties of the estimators also verified through simulation study. The result shows that the performance of the proposed estimator is better than the existing estimators

References

Adichwal NK, Kumar J, Singh R. An improved generalized class of estimators for population variance using auxiliary variables. Cogent Math Stat. 2018; 5(1): 1-8.

Cochran WG. The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce. J Agric Sci. 1940; 30(2): 262-275.

Cochran WG. Sampling Techniques. New York: John Wiley & Sons; 1977.

Das AK, Tripathi TP. Use of auxiliary information in estimating the finite population variance. Sankhya. 1978; 40(2): 139-148.

Gupta S, Shabbir J. Variance estimation in simple random sampling using auxiliary information. Hacet J Math Stat. 2008; 37(1): 57-67.

Isaki CT. Variance estimation using auxiliary information. J Am Stat Assoc. 1983; 78(381): 117-123.

Kumar A, Saini M. Exponential estimators for finite population mean using auxiliary attribute: A predictive approach. Invest Oper. 2020; 41(7): 999-1009.

Kumar M, Singh R, Sawan N, Chauhan P. Exponential ratio method of estimation in the presence of measurement errors. Int J Agric Stat Sci. 2011; 7(2): 457-461.

Mishra P, Adichwal NK, Singh R. A new log-product-type estimator using auxiliary information. J Sci Res. 2017; 61(1, 2): 179-183.

Reddy MK, Rao KR, Boiroju NK. Comparison of ratio estimators using Monte Carlo simulation. Int J Agric Stat Sci. 2010; 6(2): 517-527.

Saini M, Kumar A. Estimators of population mean using information on auxiliary attribute. J Appl Probab Stat. 2020; 15(3): 17-26.

Shabbir J. A dual to variance ratio-type estimator in simple random sampling. Proc Pakistan Acad Sci. 2006; 43(4): 279-283.

Sharma P, Singh R. Improved dual to variance ratio type estimators for population variance. Chil J Stat. 2014; 5(2): 45-54.

Singh HP, Solanki RS. A new procedure for variance estimation in simple random sampling using auxiliary information. Stat Pap. 2013; 54(2): 479-497.

Singh R, Chauhan P, Sawan N, Smarandache F. Improved exponential estimator for population variance using two auxiliary variables. Ital J Pure Appl Math. 2011; 28: 101-108.

Subramani J, Kumarapandiyan G. A class of modified ratio estimators for estimation of population variance. J Appl Math Stat Inform. 2015; 11(1): 91-114.

Sukhatme PV, Sukhatme BV. Sampling theory of surveys with applications. Iowa: The Iowa State College Press; 1970.

Upadhyaya LN, Singh HP. Estimation of the population standard deviation using auxiliary information. AM J Math-S. 2001; 21(3-4): 345-358.

Yadav SK, Kadilar C. Improved exponential type ratio estimator of population variance. Rev Colomb Estad. 2013; 36(1): 145-152.

Downloads

Published

2024-06-29

How to Cite

Mishra, P. ., Sharma, A. ., Kumar Adichwal, N. ., Rai, S. ., & Singh, R. . (2024). Log-Product-Type Estimator for Estimation of Population Variance Using Auxiliary Information. Thailand Statistician, 22(3), 610–617. retrieved from https://ph02.tci-thaijo.org/index.php/thaistat/article/view/254771

Issue

Section

Articles