Wrapped Length Biased Exponential Distribution

Authors

  • Phani Yedlapalli Department of Mathematics, Shri Vishnu Engineering College for Women (A), Vishnupur, Bhimavaram, India
  • S.V.S. Girija Department of Mathematics, Hindu College, Guntur, India
  • Y. Sreekanth Department of Mathematics, Hindu College, Guntur, India

Keywords:

Circular model, estimation, length biased exponential distribution, parameters, wrapped Lindley distribution, skewness and kurtosis

Abstract

In this article, a new circular distribution called wrapped length biased exponential distribution is introduced. The properties of the new distribution are discussed and explicit expressions are derived for the characteristic function, trigonometric moments, and other statistical measures like resultant length, mean, circular variance, standard deviation, coefficient of skewness, and kurtosis. The maximum likelihood estimation is used to evaluate the model parameter and simulation study is conducted to investigate the performance of the estimator.  Finally, an application of the model to a real data set is presented and compared with the fit attained by some other well-known models in the literature.

References

Abe T, Pewsey A. Sine-skewed circular distributions. Stat Pap. 2011; 52: 683-707.

Abe T, Shimizu K, Pewsey A. Symmetric unimodal models for directional data motivated by inverse stereographic projection. J Japan Stat Soc. 2010; 40(1): 45-61.

Adnan MAS, Roy S. Wrapped variance gamma distribution with an application to Wind direction. J Environ Stat. 2014; 6(2): 1-10.

Ahmad MHA-K, Ayat TRA-M. Wrapped Akash distribution. Electron J Appl Stat Anal. 2021a; 14(2): 305-317.

Ahmad MHA-K, Ayat TRA-M. Wrapped Ishita distribution. J Stat Appl Prob. 2021b; 10(2): 293-299.

Ahmad MHA-K, Shawkat A-K. On wrapping of quasi Lindley distribution. Mathematics (MDPI). 2019; 7(10): 1-9.

Ayat TRA-M, Ahmad MHA-K. Wrapped Shanker distribution. Ital J Pure Appl Math. 2021; 46: 184-194.

Azzalini A. A class of distributions which includes the normal ones. Scand J Stat. 1985; 12(2): 171-178.

Bhattacharjee S, Ahmed I, Das KK. Wrapped two-parameter Lindley distribution for modeling circular data. Thail Stat. 2021; 19(1): 81-94.

Bhattacharjee S, Borah D. Wrapped length biased weighted exponential distribution. Thail Stat. 2019; 17(2): 223-234.

Carslaw HS. Introduction to the theory of Fourier’s series and integrals. New York: Dover; 1930.

Dara ST, Ahmad M. Recent advances in moment distribution and their hazard rates. Germany: Academic Publishing, Lap Lambert; 2012.

Fisher RA. The effect of methods of ascertainment upon the estimation of frequencies. Ann Eugen. 1934; 6: 13-25.

Jammalamadaka SR, Sengupta A. Topics in circular statistics. Singapore: World Scientific Publishing; 2001.

Jammalamadaka SR, Kozubowski TJ. A wrapped exponential circular model. Proc AP Acad Sci. 2001; 5(1): 43-56.

Jammalamadaka SR, Kozubowski TJ. A new family of circular models: the wrapped Laplace distributions. Adv Appl Stat. 2003; 77-103.

Jammalamadaka SR, Kozubowski TJ. New families of wrapped distributions for modeling skew circular data. Commun Stat-Theory Methods. 2004; 33(9): 2059-2074.

Jones MC, Pewsey A. A family of symmetric distributions on circle. J Am Stat Assoc. 2005; 100(472): 1422-1428.

Joshi S, Jose KK. Wrapped Lindley distribution. Commun Stat-Theory Methods. 2018; 47(5): 1013-1021.

Lévy PL. Addition des variables aléatoiresdéfinies sur unecirconférence Bull Soc Math Fr. 1939; 67: 1-41.

Marshall AW, Olkin I. A new method for adding a parameter to a family of distributions with applications to the exponential and Weibull families. Biometrika.1997; 84(3): 641-652.

Minh P, Farnum NR. Using bilinear transformations to induce probability distributions. Commun Stat-Theory Methods. 2003; 32(1): 1-9.

Pewsey A. The wrapped skew-normal distribution on the circle. Commun Stat-Theory Methods. 2000; 29: 2459-2472.

Rao AVD, Girija SVS, Phani Y. Stereographic logistic model-application to ornithology. Chil J Stat. 2016; 7(2): 69-79.

Rao AVD, Sharma IR, Girija SVS. On wrapped version of some life testing models. Commun Stat-Theory Methods. 2007; 36(11): 2027-2035.

Rao RS, Ravindranath V, Dattatreya Rao AVD, Prasad G, Kishore PR. Wrapped Lomax distribution: a new circular probability model. Int J Eng Technol (UAE). 2018; 7(3.31): 136-140.

Roy S, Adnan MAS. Wrapped weighted exponential distributions. Stat Prob Lett. 2012a; 82(1): 77-83.

Roy S, Adnan MAS. Wrapped generalized Gompertz distribution: an application to ornithology. J Biom Biostat. 2012b; 3(6): 1000153, https://doi.org/10.4172/2155-6180.1000153.

Yedlapalli P, Girija SVS, Rao AVD. On construction of stereographic semicircular models. J Appl Prob Stat. 2013; 8(1): 75-90.

Yedlapalli P, Girija SVS, Rao AVD, Sastry KLN. A new family of semicircular and circular arc tan-exponential type distributions. Thai J Math. 2020; 18(2): 775-781.

Downloads

Published

2024-06-29

How to Cite

Yedlapalli, P. ., Girija, S. ., & Sreekanth, Y. . (2024). Wrapped Length Biased Exponential Distribution. Thailand Statistician, 22(3), 688–700. retrieved from https://ph02.tci-thaijo.org/index.php/thaistat/article/view/254778

Issue

Section

Articles