Bayesian Analysis of Generalized Linear Models for Count Data using Stan

Authors

  • Firdoos Yousuf Department of Statistics, Government Degree College, Bijbehara Anantnag, Jammu and Kashmir, India
  • Athar Ali Khan Department of Statistics and Operations Research, Aligarh Muslim University, Aligarh, Uttar Pradesh, India

Keywords:

Bayesian inference, Poisson regression, negative binomial regression, posterior, Stan, LOOIC, WAIC

Abstract

In this paper, Bayesian approach is used to model count data for generalized linear models (GLMs) using Stan language. Commonly used GLMs include logistic regression for binary data and Poisson regression or Negative binomial regression for count data. The loo package is used for model selection. The Bayesian model comparison criteria LOOIC and WAIC are applied to evaluate the models. Furthermore, parallel simulations tools are also implemented with an extensive use of R.

References

Betancourt MJ. Generalizing the No-U-Turn sampler to Riemannian manifolds. 2013. Available from: https://doi.org/10.48550/arXiv.1304.1920.

Cameron AC, Trivedi PK, Milne F, Piggott J. A microeconometric model of the demand for health care and health insurance in Australia. Rev Econ Stud. 1988; 55(1): 85-106.

Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J, Li P, Riddell A. Stan: A probabilistic programming language. J Stat Softw. 2017; 76(1): 1-32.

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian Data Analysis. New York: Chapman and Hall/CRC; 2014.

Hausman JA, Hall BH, Griliches Z. Econometric models for count data with an application to the patents-R and D relationship. Econometrica. 1984; 52(4): 909-938.

Hoffman MD, Gelman A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J Mach Learn Res. 2014; 15(1): 1593-1623.

McCullagh P, Nelder JA. Generalized Linear Models. New York: Chapman and Hall/CRC; 1989.

McElreath R. Statistical rethinking: A Bayesian course with examples in R and Stan. Chapman and Hall/CRC; 2020.

Nelder JA,Wedderburn RWM. Generalized Linear Models. J R Stat Soc Ser A-G. 1972; 135: 370-384.

Ntzoufras I. Bayesian Modeling Using WinBUGS. New York: John Wiley and Sons; 2009.

Stan Development Team. RStan: the R interface to Stan. R package version 2.21.2. 2020. Available from: http://mc-stan.org/.

Vehtari A, Gelman A, Gabry J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat Comput. 2017; 27(5): 1413-1432.

Venables WN, Ripley BD. Modern Applied Statistics with S. New York: Springer; 2002.

Wang X, Ryan YY, Faraway JJ. Bayesian Regression Modeling with INLA. Chapman and Hall/CRC; 2018.

Zellner A. An Introduction to Bayesian Inference in Econometrics. New York: John Wiley & Sons; 1971.

Downloads

Published

2024-12-25

How to Cite

Yousuf, F. ., & Khan, A. A. . (2024). Bayesian Analysis of Generalized Linear Models for Count Data using Stan. Thailand Statistician, 23(1), 29–40. Retrieved from https://ph02.tci-thaijo.org/index.php/thaistat/article/view/257211

Issue

Section

Articles