Interval Estimation in Location-Scale Family, Using Information Measures

Authors

  • Saeid Maadani Department of Statistics, Ferdowsi University of Mashhad, Mashhad, Razavi Khorasan, Iran
  • Gholam Reza Mohtashami Borzadaran Department of Statistics, Ferdowsi University of Mashhad, Mashhad, Razavi Khorasan, Iran
  • Abdolhamid Rezaei Roknabadi Department of Statistics, Ferdowsi University of Mashhad, Mashhad, Razavi Khorasan, Iran

Keywords:

Asymptotic confidence interval, location and scale family, Shannon entropy, varentropy

Abstract

Interval estimation is one of the important concepts in statistics. There are different methods to find a confidence interval for distribution parameters, but finding an optimal confidence interval is always a concern. On the other hand, it is important to find a confidence interval for the Shannon information of the ith order statistic when the distribution parameters are unknown. In the present paper, using information measures, we introduce an asymptotic confidence interval for scale parameter and the Shannon information of the ith order statistic related to the location-scale family. Via simulation study, we study the coverage probability and length of confidence intervals. Finally, some examples for hypothesis testing related to the Shannon information of the ith order statistic and the scale parameter are provided.

References

Abbasnejad M, Arghami NR. Renyi entropy properties of order statistics. Comm Stat Theo Meth. 2010; 40(1): 40-52.

Afhami B, Madadi M, Rezapour M. Goodness-of-fit test based on Shannon entropy of k-record value from the generalized Pareto distribution. Stat Sci. 2015; 9(1): 43-60.

Alizadeh Noughabi H, Arghami NR. Goodness-of-fit tests based on correcting moments of entropy estimators. Comm Stat Simul Comput. 2013; 42(3): 499-513.

Alrasheedi M. Confidence intervals for double exponential distribution: A Simulation Approach. Int J Phys Math Sci. 2012; 6(1): 84-88

Arikan E. Varentropy decreases under the polar transform. IEEE Trans Inf Theo. 2016; 62(6): 3390-3400.

Bain LJ, Engelhardt M. Interval estimation for the two parameter double exponential distribution. Technometrics. 1973; 15(4): 875- 887.

Baratpour S, Khammar A. Tsallis entropy properties of order statistics and some stochastic comparisons. JSRI. 2016; 13(1): 25-41.

Baten A, Kamil A. Inventory management systems with hazardous items of two-parameter exponential distribution. J Sos Sci. 2009; 5(3): 183-187.

Bobkov S, Madiman M. Concentration of the information in data with log-concave distributions. Ann Probab. 2011; 39(4): 1528-1543.

Casella G, Berger RL. Statistical inference. Belmont California: Wadsoworth Publishing; 1990.

Childs A, Balakrishnan N. Conditional inference procedures for the Laplace distribution based on Type-II right censored samples. Stat Probab Lett. 1996; 31(1): 31-39.

Choi B, Kim K. Testing goodness-of-fit for Laplace distribution based on maximum entropy. Statistics. 2006; 40(6): 517-531.

Di Crescenzo A, Paolillo L. Analysis and applications of the residual varentropy of random lifetimes. Probab Eng Inf Sci. 2020; 35(3): 680-698.

Ebrahimi N, Soofi ES, Zahedi H. Information properties of order statistics and spacings. IEEE Trans Inf Theo. 2004; 50(1): 177-183.

Enomoto R, Okamoto N, Seo T. On the asymptotic normality of test statistics using Songs kurtosis. J Stat Theo Pract. 2013; 7(1): 102-119.

Gel YR. Test of fit for a Laplace distribution against heavier tailed alternatives. Comput Stat Data Anal. 2010; 54(4): 958-965.

Iliopoulos G, Balakrishnan N. Exact likelihood inference for Laplace distribution based on Type-II censored samples. J Stat Plan Inf. 2011; 141(3): 1224-1239.

Jager L, Wellner JA. Goodness-of-fit Tests via Phi-divergences. Ann Stat. 2007; 35(5): 20182053.

Jiang L, Wong A. Interval estimations of the two-parameter exponential distribution. J Probab Stat. 2012; doi:10.1155/2012/734575.

Kappenman RF. Conditional confidence intervals for double exponential distribution parameters. Technometrics.1975; 17(2): 233-235.

Kontoyannis I, Verdu S. Optimal lossless compression: Source varentropy and dispersion. IEEE International Symposium Information Theory. 2013 Jul 7-12; Turkey. Istanbul: IEEE Xplore; 2013. p. 1739-1743.

Maadani S, Mohtashami Borzadaran GR, Rezaei Roknabadi AH. A new generalized varentropy and its properties. Ural math J. 2020; 6(1): 114-129.

Maadani S, Mohtashami Borzadaran GR, Rezaei Roknabadi AH. Varentropy of order statistics and some stochastic comparisons. Comm Stat Theo Meth. 2021; doi:10.1080/03610926.2020.1861299.

Menendez ML. Shannons entropy in exponential families, statistical applications. Appl Math Lett. 2000; 13(1): 37-42.

Pasha E, Khodabin M, Mohtashami Borzadaran GR . Testing statistical hypothesis via Shannon’s entropy in exponential families. Iranian Int J Sci. 2004; 5(2): 267-279.

Petropoulos C. New classes of improved confidence intervals for the scale parameter of a two parameter exponential distribution. Stat Methodol. 2011; 8(4): 401-410.

Puig P, Stephens MA. Tests of fit for the Laplace distribution, with applications. Technometrics. 2000; 42(4): 417-424.

Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948; 27(3): 379-423.

Song KS. Renyi information, log likelihood and an intrinsic distribution measure. J Stat Plan Infer. 2001; 93(1-2): 51-69.

Taufer E. On entropy based tests for exponentiality. Commu Stat Simul Comput. 2002; 31(2): 189-200.

Tsallis C. Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys. 1988; 52(1): 479-487.

Wong KM, Chen S. The entropy of ordered sequences and order statistics. IEEE Trans Inf Theo. 1990; 36(2): 276-284.

Zamanzade E, Arghami NR. Testing normality based on new entropy estimators. J Stat Comput Simul. 2012; 82(11): 1701-1713.

Zografos K. On Mardias and Songs measures of kurtosis in elliptical distributions. J Multivar Anal. 2008; 99(5): 858-879.

Downloads

Published

2025-12-27

How to Cite

Maadani, S. ., Reza Mohtashami Borzadaran, G. ., & Rezaei Roknabadi, A. . (2025). Interval Estimation in Location-Scale Family, Using Information Measures. Thailand Statistician, 24(1), 12–25. retrieved from https://ph02.tci-thaijo.org/index.php/thaistat/article/view/263011

Issue

Section

Articles