A New Exponent-Generator Family of Statistical Distribution with Simulation and Analysis to Cancer Data
Keywords:
Exponent-Generator family of distribution, power function distribution, exponent power function distribution, hazard rate function, maximum likelihood estimationAbstract
A novel family of distribution has been introduced, named as "exponent-Generator family of statistical distribution", designed for optimal univariate modeling. We explored the structural and characterizing properties of a newly proposed distribution, the exponent power function (EPF) distribution. We provide explicit expressions for the probability density function (PDF), cumulative distribution function (CDF), reliability function (RF), and hazard rate function (HRF). Also the r-th moment, moment generating function (MGF), and the order statistics are obtained. The manuscript also includes a detailed discussion on the shapes of PDF and HRF for selected parameter values, providing valuable insights into the behavior of distribution. Moreover, we discussed maximum likelihood estimation (MLE) and Bayesian estimation method. The adaptability of the proposed distribution is evaluated by analyzing the three real data sets related to lifetime of cancer patients as well as a simulated dataset.
References
Abouammoh, A. M., Abdulghani, S. A., & Qamber, I. S. (1994). On partial orderings and testing of new better than renewal used classes. Reliability Engineering & System Safety, 43(1), 37–41.
Ahad, N., Ahmad, S. P., & Reshi, J. A. (2024). Bayesian analysis of extended Maxwell–Boltzmann distribution using simulated and real-life data sets. Reliability: Theory & Applications, 19(2), 188–201.
Ahsan-ul-Haq, M., Aldahlan, M. A., Zafar, J., Gómez, H. W., Afify, A. Z., & Mahran, H. A. (2023). A new cubic transmuted power-function distribution: Properties, inference, and applications. PLoS ONE, 18(2), e0281419.
Akhter, A. S. (2013). Methods for estimating the parameters of the power function distribution. Pakistan Journal of Statistics and Operation Research, 9(2), 213–224.
Al Mutairi, A., Iqbal, M. Z., Arshad, M. Z., & Afify, A. Z. (2022). A new class of the power function distribution: Theory and inference with an application to engineering data. Journal of Mathematics, 2022, 1–15.
Alshawarbeh, E., Arshad, M. Z., Iqbal, M. Z., Ghamkhar, M., Al Mutairi, A., Meraou, M. A., Hussam, E., & Alrashidi, A. (2024). Modeling medical and engineering data using a new power function distribution: Theory and inference. Journal of Radiation Research and Applied Sciences, 17(1), 100787.
Bourguignon, M., Silva, R. B., & Cordeiro, G. M. (2014). The Weibull-G family of probability distributions. Journal of Data Science, 12(1), 53–68.
Cordeiro, G. M., Ortega, E. M. M., & da Cunha, D. C. C. (2013). The exponentiated generalized class of distributions. Journal of Data Science, 11(1), 1–27.
Dallas, A. C. (1976). Characterizing the Pareto and power distributions. Annals of the Institute of Statistical Mathematics, 28, 491–497.
Hanif, S., Al-Ghamdi, S. D., Khan, K., & Shahbaz, M. Q. (2015). Bayesian estimation for parameters of power function distribution under various priors. Mathematical Theory and Modeling, 5(13), 1–15.
Hassan, A. S., & Nassr, S. G. (2020). A new generalization of power function distribution: Properties and estimation based on censored samples. Thai Statistician, 18(2), 215–234.
Hassan, A. S., & Nassr, S. G. (2019). Power Lindley-G family of distributions. Annals of Data Science, 6(2), 189–210.
Hassan, A. S., & Nassr, S. G. (2018). The inverse Weibull generator of distributions: Properties and applications. Journal of Data Science, 16(4), 723–742.
Hassan, A. S., & Assar, S. M. (2017). The exponentiated Weibull power function distribution. Journal of Data Science, 16(2), 589–614.
Hassan, A. S., & Elgarhy, M. (2016). A new family of exponentiated Weibull-generated distributions. International Journal of Mathematics and Applications, 4(1-D), 135–148.
Lee, E. T., & Wang, J. (2003). Statistical methods for survival data analysis. New Jersey: John Wiley & Sons.
Lone, M. A., Dar, I. H., & Jan, T. R. (2022). A new method for generating distributions with an application to Weibull distribution. Reliability: Theory & Applications, 17(1), 223–239.
Meniconi, M., & Barry, D. M. (1996). The power function distribution: A useful and simple distribution to assess electrical component reliability. Microelectronics Reliability, 36(9), 1207–1212.
Naveed-Shahzad, M., Asghar, Z., Shehzad, F., & Shahzadi, M. (2015). Parameter estimation of power function distribution with TL-moments. Revista Colombiana de Estadística, 38(2), 321–334.
Okorie, I. E., Akpanta, A. C., Ohakwe, J., Chikezie, D. C., Onyemachi, C. U., & Rastogi, M. K. (2021). Zero-truncated Poisson–power function distribution. Annals of Data Science, 8(1), 107–129.
Okasha, M. K., & Matter, M. Y. (2015). On the three-parameter Burr type XII distribution and its application to heavy-tailed lifetime data. Journal of Advances in Mathematics, 10(4), 3429–3442.
Saran, J., & Pandey, A. (2004). Estimation of parameters of a power function distribution and its characterization by k-th record values. Statistica, 64(3), 523–536.
Sathar, E. I. A., & Sathyareji, G. S. (2022). Estimation of the parameters of power function distribution based on progressively Type-II right censoring with binomial removal. Statistica, 82(3), 201–227.
Subramanian, C., & Rather, A. (2019). Exponentiated power distribution: Properties and estimation. Science, Technology and Development, VIII(IX), 213–223.
Sultan, R., Sultan, H., & Ahmad, S. P. (2014). Bayesian analysis of power function distribution under double priors. Journal of Statistical Applications and Probability, 3(2), 239–249.
Tahir, M. H., Alizadeh, M., Mansoor, M., Cordeiro, G. M., & Zubair, M. (2016). The Weibull–power function distribution with applications. Hacettepe Journal of Mathematics and Statistics, 45(1), 245–265.
Haq, M. A., Usman, R. M., Bursa, N., & Özel, G. (2018). McDonald power function distribution with theory and applications. International Journal of Statistics and Economics, 19(1), 89–107.
Haq, M. A., Albassam, M., Aslam, M., & Hashmi, S. (2021). Statistical inferences on odd Fréchet power function distribution. Journal of Reliability and Statistical Studies, 14(1), 141–172.
Wang, C. (2023). Parameter estimation for power function–lognormal composite distribution. Communications in Statistics—Theory and Methods, 52(9), 2966–2982.
Zaka, A., Akhter, A. S., & Jabeen, R. (2020). The new reflected power function distribution: Theory, simulation and application. AIMS Mathematics, 5(5), 5031–5054.
Zarrin, S., Saxena, S., Kamal, M., & Islam, A. U. (2013). Reliability computation and Bayesian analysis of system reliability of power function distribution. International Journal of Advanced Engineering Science and Technology, 2(4), 76–86.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
