A New Class of Models with Bathtub Shaped Hazard Rate Functions

Authors

  • Regent Retrospect Musekwa Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Palapye, Botswana
  • Boikanyo Makubate Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Palapye, Botswana

Keywords:

Alpha power transformation, residual life function, reliability model, hazard rate function, quantile function, moment generating function

Abstract

In the present research, we compound the alpha power transformation distribution with the power
series distribution to create a novel distribution known as the alpha power transformed-G Power Series (APT-GPS) distribution. The APT-GPS distribution’s statistical characteristics are discovered. The density and hazard rate life plots are shown in a range of forms using a Weibull baseline distribution. Additionally, a simulation study is carried out to evaluate the effectiveness of the maximum likelihood estimates. Lastly, some samples of bladder cancer data and United Kingdom (UK) Covid-19 data are evaluated for illustrative purposes. The results show that, in comparison to other non-nested distributions taken into consideration in this article, the proposed distribution offers a better fit as it exhibits the lowest goodness of fit statistics values and the highest accuracy rate on both data sets.

References

Al-Dayel, I., Alshahrani, M. N., Elbatal, I., Alotaibi, N., Shawki, A. W., & Elgarhy, M. (2022). Statistical analysis of COVID-19 data for three different regions in the Kingdom of Saudi Arabia using a new two-parameter statistical model. Computational and Mathematical Methods in Medicine, 2022, 2066787.

Ali, M., Khalil, A., Ijaz, M., & Saeed, N. (2021). Alpha-power exponentiated inverse Rayleigh distribution and its applications to real and simulated data. PLoS ONE, 16(1), e0245253.

Alzaatreh, A., Lee, C., & Famoye, F. (2013). A new method for generating families of continuous distributions. Metron, 71(1), 63–79.

Anake, T. A., Oguntunde, P. E., & Odetunmibi, O. A. (2015). On a fractional beta-exponential distribution. International Journal of Mathematical and Computational Sciences, 26(1), 26–34.

Aryal, G. R., & Yousof, H. M. (2017). The exponentiated generalized-G Poisson family of distributions. Stochastic Quality Control, 32(1), 7–23.

Ashraf, J. H., Iqbal, Z., & Chakrabarty, T. K. (2024). A new generalized exponentiated Weibull distribution: Properties and applications. Thai Statistician, 22(4), 856–876.

Aslam, M., Hussain, Z., & Asghar, Z. (2018). Cubic transmuted-G family of distributions and its properties. Stochastic Quality Control, 33(2), 103–112.

Basheer, A. M. (2019). Alpha power inverse Weibull distribution with reliability application. Journal of Taibah University for Science, 13(1), 423–432.

Chamunorwa, S., Oluyede, B., Chipepa, F., Makubate, B., & Zidana, C. (2022). The exponentiated half-logistic generalized-G power series class of distributions. Journal of Probability and Statistical Science, 20(1), 21–40.

Chamunorwa, S., Oluyede, B., Moakofi, T., & Chipepa, F. (2024). The type II exponentiated half-logistic Gompertz-G power series class of distributions. Statistics, Optimization & Information Computing, 12(2), 381–399.

Çeren, C., Çakmakyapan, S., & Özel, G. (2018). Alpha power inverted exponential distribution: Properties and application. Gazi University Journal of Science, 31(3), 954–965.

Chipepa, F., Makubate, B., Rannona, K., & Oluyede, B. (2021). The Topp–Leone-G power series class of distributions with applications. Pakistan Journal of Statistics and Operation Research, 17(4), 827–846.

Chuncharoenkit, W., Bodhisuwan, W., & Aryuyuen, S. (2024). Discrete Gompertz–Lomax distribution and its applications. Thai Statistician, 22(4), 832–855.

Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association, 79(387), 531–554.

Cordeiro, G. M., Ortega, E. M. M., & da Cunha, D. C. C. (2013). The exponentiated generalized class of distributions. Journal of Data Science, 11(1), 1–27.

Dey, S. (2007). Inverted exponential distribution as a life distribution model from a Bayesian viewpoint. Data Science Journal, 6, 107–113.

Eghwerido, J. T. (2020). The alpha power Weibull–Fréchet distribution: Properties and applications. Turkish Journal of Science, 5(3), 170–185.

Eghwerido, J. T., Efe-Eyefia, E., & Zelibe, S. C. (2021). The transmuted alpha power-G family of distributions. Journal of Statistics Management Systems, 24(5), 965–1002.

Gradshteyn, I. S., & Ryzhik, I. M. (2014). Table of integrals, series, and products. Academic Press.

Gupta, R. C., Gupta, P. L., & Gupta, R. D. (1998). Modeling failure time data by Lehman alternatives. Communications in Statistics—Theory and Methods, 27(4), 887–904.

Gupta, R. D., & Kundu, D. (2001). Generalized exponential distribution: Different method of estimations. Journal of Statistical Computation and Simulation, 69(4), 315–337.

Hassan, A. S., Mohamd, R. E., Elgarhy, M., & Fayomi, A. (2018). Alpha power transformed extended exponential distribution: Properties and applications. Journal of Nonlinear Sciences and Applications, 12(4), 62–67.

Ijaz, M., Asim, S. M., Alamgir, F., Farooq, M., Khan, S. A., & Manzoor, S. (2020). A Gull alpha power Weibull distribution with applications to real and simulated data. PLoS ONE, 15(6), e0233080.

Lee, E. T., & Wang, J. (2003). Statistical methods for survival data analysis. New Jersey: John Wiley & Sons.

Mahdavi, A., & Kundu, D. (2017). A new method for generating distributions with an application to exponential distribution. Communications in Statistics—Theory and Methods, 46(13), 6543–6557.

Makubate, B., Matsuokwane, M., Gabaitiri, L., Oluyede, B. O., & Chamunorwa, S. (2022). The type II Topp–Leone-G power series distribution with applications on bladder cancer. Journal of the Nigerian Society of Physical Sciences, 4, 848–848.

Makubate, B., & Musekwa, R. R. (2024). A novel technique for generating families of continuous distributions. Statistics, Optimization & Information Computing, 12(5), 1231–1248.

Marshall, A. W., & Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika, 84(3), 641–652.

Musekwa, R. R., & Makubate, B. (2023). Statistical analysis of Saudi Arabia and UK COVID-19 data using a new generalized distribution. Scientific African, 22, e01958.

Musekwa, R. R., Gabaitiri, L., & Makubate, B. (2024). Application of the Marshall–Olkin–Weibull logarithmic distribution to complete and censored data. Heliyon, 10(14), e34170.

Musekwa, R. R., & Makubate, B. (2024). A flexible generalized XLindley distribution with application to engineering. Scientific African, 24(2), e02192.

Musekwa, R. R., Gabaitiri, L., & Makubate, B. (2024). A new technique to generate families of continuous distributions. Revista Colombiana de Estadística, 47(2), 329–354.

Mustafa, M., Alizadeh, M., Yousof, H. M., & Butt, N. S. (2018). The generalized odd Weibull generated family of distributions: Statistical properties and applications. Pakistan Journal of Statistics and Operation Research, 14(3), 541–556.

Nyamajiwa, V. Z., Musekwa, R. R., & Makubate, B. (2024). Application of the new extended Topp–Leone distribution to complete and censored data. Revista Colombiana de Estadística, 47(1), 37–65.

Oguntunde, P. E., Babatunde, O. S., & Ogunmola, A. O. (2014). Theoretical analysis of the Kumaraswamy–inverse exponential distribution. International Journal of Statistics and Applications, 4(2), 113–116.

Oguntunde, P. E., Adejumo, A., & Balogun, O. S. (2014). Statistical properties of the exponentiated generalized inverted exponential distribution. Applied Mathematics, 4(2), 47–55.

Oguntunde, P. E., & Adejumo, A. O. (2015). The transmuted inverse exponential distribution. International Journal of Advanced Statistics and Probability, 3(1), 1–7.

Oluyede, B., Mashabe, B., Fagbamigbe, A., Makubate, B., & Wanduku, D. (2020). The exponentiated generalized power series family of distributions: Theory, properties and applications. Heliyon, 6(8), e04653.

Oluyede, B., Chipepa, F., & Wanduku, D. (2021). The odd Weibull–Topp–Leone-G power series family of distributions: Model, properties and applications. Journal of Nonlinear Sciences and Applications, 14(4), 268–286.

Oluyede, B., Chamunorwa, S., Chipepa, F., & Alizadeh, M. (2022). The Topp–Leone Gompertz-G family of distributions with applications. Journal of Statistics Management Systems, 25(6), 1399–1423.

Oluyede, B., Dingalo, N., & Chipepa, F. (2024). A new and generalized class of log-logistic modified Weibull power series distributions with applications. Thai Statistician, 22(2), 237–273.

Oluyede, B., Peter, P. O., & Ndwapi, N. (2024). The exponentiated half-logistic–generalized Marshall–Olkin-G family of distributions with properties and applications. Thai Statistician, 22(4), 779–802.

Pararai, M., Warahena-Liyanage, G., & Oluyede, B. O. (2017). Exponentiated power Lindley–Poisson distribution: Properties and applications. Communications in Statistics—Theory and Methods, 46(10), 4726–4755.

Rahman, M. M., Al-Zahrani, B., & Shahbaz, M. Q. (2018). A general transmuted family of distributions. Pakistan Journal of Statistics and Operation Research, 14, 451–469.

Rannona, K., Oluyede, B. O., Chipepa, F., & Makubate, B. (2022). The exponentiated odd exponential half-logistic-G power series class of distributions with applications. Journal of Statistics Management Systems, 25(8), 1821–1848.

Sengweni, W., Oluyede, B. O., & Makubate, B. (2023). The Marshall–Olkin Topp–Leone half-logistic-G family of distributions with applications. Statistics, Optimization & Information Computing, 11(4), 1001–1026.

Tahmasebi, S., & Jafari, A. A. (2015). Generalized Gompertz–power series distributions. Hacettepe Journal of Mathematics and Statistics, 45(5), 1579–1604.

Tahir, M. H., Cordeiro, G. M., Mansoor, M., & Zubair, M. (2015). The Weibull–Lomax distribution: Properties and applications. Hacettepe Journal of Mathematics and Statistics, 44(2), 455–474.

Tahir, M. H., Hussain, M. A., & Cordeiro, G. M. (2022). A new flexible generalized family for constructing many families of distributions. Journal of Applied Statistics, 49(7), 1615–1635.

Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of Applied Mechanics, 18, 290–293.

Zaka, A., Akhter, A. S., & Jabeen, R. (2020). The new reflected power function distribution: Theory, simulation and application. AIMS Mathematics, 5(5), 5031–5054.

Zarrin, S., Saxena, S., Kamal, M., & Islam, A. U. (2013). Reliability computation and Bayesian analysis of system reliability of power function distribution. International Journal of Advanced Engineering Science and Technology, 2(4), 76–86.

Zidana, C., Sengweni, W., Oluyede, B. O., & Chipepa, F. (2024). Cancer data modelling: Application of the Gamma–Odd Topp–Leone-G family of distributions. Revista Colombiana de Estadística, 47(2), 355–383.

Downloads

Published

2025-12-27

How to Cite

Retrospect Musekwa, R. ., & Makubate, B. . (2025). A New Class of Models with Bathtub Shaped Hazard Rate Functions. Thailand Statistician, 24(1), 98–115. retrieved from https://ph02.tci-thaijo.org/index.php/thaistat/article/view/263017

Issue

Section

Articles