Robust Estimation of Regression Coefficients with Outliers
Keywords:
influence functions, M-estimates, multiple linear regression, outliers, robust regression, weighted least-squaresAbstract
This study concentrates on the construction of weights for the estimation of regression coefficients in multiple linear regression with outliers using a new proposed influence function. Set of weights, modified weights one (MW1) are obtained from newly modified influence function. The proposed estimates are applied in the M-estimator of the regression coefficients with outliers and compared to ordinary least-squares (OLS) and other M-estimates by simulation. Results of the estimates indicate that the new weights out perform the least squares estimates and the other M-estimates. As for X-outliers and XY-outliers, it is found that the proposed estimates using MW out perform the least squares estimates for all sample sizes. It also gives high values of R2 and low MSE at different percentages of outliers as well.Downloads
How to Cite
Ampanthong, P., & Suwattee, P. (2015). Robust Estimation of Regression Coefficients with Outliers. Thailand Statistician, 8(2), 183–205. retrieved from https://ph02.tci-thaijo.org/index.php/thaistat/article/view/34294
Issue
Section
Articles