การใช้วัสดุแกรฟีนกับโครงสร้างคานเชิงประกอบแบบ FGMs -การทบทวนวรรณกรรม
Main Article Content
บทคัดย่อ
วัสดุแกรฟีนได้รับความสนใจกันอย่างมากมาย เนื่องจากวัสดุประเภทนี้มีสมบัติเชิงกลที่เหนือกว่า เช่น ความยืดหยุ่น ความแข็งแกร่ง พื้นที่ผิวสัมผัสสูง และนำความร้อนสูง เป็นต้น สำหรับรูปแบบโครงสร้างคานที่พิจารณาอยู่ในรูปแบบวัสดุสมบัติเชิงหน้าที่ (Functionally Graded Materials) ที่เป็นลักษณะไล่ระดับระดับส่วนผสมตามทิศทางการออกแบบ ในส่วนการนำเสนอแบ่งออกเป็นหัวข้อได้แก่ (1) สมบัติเชิงกลของวัสดุแกรฟีน (2) ลักษณะวัสดุสมบัติเชิงหน้าที่และกระบวนการสร้าง (3) การประเมินสมบัติยังผลของวัสดุเชิงประกอบ (4) บทความวิจัยที่ผ่านมากับการวิเคราะห์โครงสร้างเชิงประกอบด้วยวัสดุแกรฟีน และสรุปผล ตามลำดับ
Article Details
บทความนี้เป็นลิขสิทธิ์ของวารสาร Engineering Transactions คณะวิศวกรรมศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีมหานคร
เอกสารอ้างอิง
Nuclear Engineering and Design, Vol. 240, pp. 697-705, 2010.
[2] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, Vol. 354, pp. 56-58, 1991.
[3] K. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, “Electric field effect in
atomically thin carbon films”, Science, Vol. 306(5696), pp. 666-669, 2004.
[4] S. Zhaoa, Z. Zhaob, Z. Yangc, L. Ked, S. Kitipornchaia and J. Yangb, “Functionally graded graphene reinforced composite
structures: A review”, Engineerng Structures, Vol. 210, 2020.
[5] แมนมนัส ศรีแก้ว และสายันต์ แสงสุวรรณ,”วัสดุมหัศจรรย์แกรฟีน : กลยุทธ์การสังเคราะห์สมบัติการพัฒนา
การพิสูจน์เอกลักษณ์และการประยุกต์ใช้ (Graphene (The miracle material) : Strategies for Synthesis, Properties,
Development, Characterizations and Applications)”, วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี, ปีที่ 22 ฉบับที่ 2 เดือน
พฤษภาคม-สิงหาคม, หน้า 39-49, 2563.
[6] AK. Geim and KS. Novoselov, “The rise of graphen”, Nat Mater, Vol. 6, pp. 183-191, 2007.
[7] C. Lee, X. Wei, JW. Kysar and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer grapheme”,
Science, Vol. 321, pp. 385-388, 2008.
[8] SP. Koenig, NG. Boddeti, ML. Dunn and JS. Bunch, “Ultrastrong adhesion of grapheme membranes”, Nat Nanotechnol, Vol. 6,
pp. 543-546, 2011.
[9] A. Politano, AR. Marino, D. Campi, D. Farias, R. Miranda and G. Chiarello, “Elastic properties of a macroscopic grapheme sample
from phonon dispersion measurements”, Carbon, Vol. 50, pp. 4903-4910, 2012.
[10] GV. Lier, CV. Alsenoy, VV. Doren and P. Geerlings, “Ab initio study of the elastic properties of single-walled carbon nanotubes
and grapheme”, Chem Phys Lett, Vol. 326, pp. 181-185, 2000.
[11] C. Li and T-W. Chou, “A structural mechanics approach for the analysis of carbon nanotubes”, Int J Solids Struct, Vol. 40, pp.
2487-2499, 2003.
[12] F. Liu, P. Ming and J. Li, “Ab initiocalculation of ideal strength and phonon instability of grapheme under tension”, Phys Rev B,
Vol. 76, 2007.
[13] MM. Shokrieh and R. Rafiee, “Prediction of Young’s modulus of grapheme sheets and carbon nanotubes using nanoscale
continuum mechanics approach”, Mater Des, Vol. 31, pp. 790-795, 2010.
[14] DG. Kvashnin and PB. Sorokin, “Effect of ultrahigh stiffness of defective grapheme from atomistic point of view”, J Phys Chem
Lett, Vol. 6, pp. 2384-2387, 2015.
[15] J.N. Reddy, “Mechanics of Laminated composite plates and shells Theory and Analysis”, 2nd ed., U.S.A: CRC Press, 2004.
[16] M. Niino, T. Hirai and R. Watanabe, “The functionally gradient materials”, Journal of the Japan Society for Composite
Materials, Vol. 13, pp.257-264, 1987.
[17] S.S. Wang, “Fracture mechanics for delamination problems in composite
materials,” Journal of Composite Materials, Vol. 17(3), pp. 210-223. 1983.
[18] A. Gupta, and M. Talha, “Recent development in modeling and analysis of
materials and structures”. Progress in Aerospace Sciences, Vol.79, pp. 1-14, 2015.
[19] A. Gupta, and M. Talha, “Recent development in modeling and analysis of
materials and structures”. Progress in Aerospace Sciences, Vol.79, pp. 1-14, 2015.
[20] M. Naebe, and K. Shirvanimoghaddam, “Functionally graded materials: A review
of fabrication and properties,” Applied Materials Today, Vol. 5, pp.223-245. 2016.
[21] Y. Miyamoto, WA. Kaysser, BH. Rabin and A. Kawasaki, “Functionally graded material:design processing and applications”. New
York: Springer Science Business Media, 1999.
[22] C. Feng, S. Kitipornchai and J. Yang, “Nonlinear bending of polymer nano composite beams reinforce with
non-uniformly distributed grapheme platelets (GPLs)”, Compos B Eng., Vol. 110, pp. 132-140, 2017.
[23] M. Song, S. Kitipornchai and J. Yang, “Free and forced vibrations of functionally graded polymer composite plates reinforced
With grapheme nanoplatelets”, Compos Struct, Vol. 159, pp. 579-588, 2017.
[24] J. Yang, H. Wu and S. Kitipornchai, “Buckling and postbuckling of functionally graded multilayer grapheme platelet-reinforced
composite beams”, Compos Struct, Vol. 161, pp. 111-118, 2017.
[25] M. Piggott, “Load bearing fiber composites”, Moscow: Kluwer Academic Publisher; 2002.
[26] RM. Jones, “Mechanics of composite materials”, Taylor & Francis, 1999.
[27] V. Ungbhakorn and N. Wattanasakulpong, “Thermo-elasic vibration analysis of third-order shear deformable functionally
Graded plates with distributed patch mass under thermal environment”, Applied Acoustics, Vol. 74, pp. 1045-1059, 2013.
[28] Z.X. Lei, L.W. Zhang and K.M. Liew, “Analysis of laminated CNT reinforced functionally graded plates using the element-free
kp-Riz method”, Composites Part B, Vol. 84, pp. 211-221, 2016.
[29] L. Li, L. Xiaobai and H. Yujin, “Free vibration analysis of nonlocal strain gradient beams made of functionally graded material”,
International Journal of Engineering Science, Vol. 102, pp. 77-92, 2016.
[30] M. Royal, B. Shubhankar and N.S. Kashi, “Stress and deformation of functionally graded rotating
Disk based on modified rule of mixture”, Materialstoday:PROCEEDINGS, Vol. 9, pp. 17778-17785, 2018.
[31] M.B. Yihumie, E.W. Dereje, T.C. Ewnetu, A.A. Solomon, K.S. Senthil and P. Velmurugan, “Effect of volumetric fraction index on
temperature distribution in thick-walled functionally graded material made cylinder”, Materialstoday:PROCEEDINGS, Vol. 46, pp. 7442-7447, 2021.
[32] HL. Cox, “The elasticity and strength of paper and other fibrous materials”, Br. J. Appl. Phys., Vol. 3, pp. 72, 1952.
[33] T. Abhishek and K.S. Sunil, “Modified shear lag theory based fatigue crack growth life prediction model for short-fiber
reinforced metal matrix composites”, International Journal of Fatigue, Vol. 70, pp. 123-129, 2015.
[34] JC. Halpin, “Stiffness and expansion estimates for oriented short fiber composites”, J. Compos. Mater., Vol. 3, pp. 732-734,
1969.
[35] JC. Halpin and JL. Kardos, “The Halpin-Tsai equations: a review”, Polym Eng. Sci., Vol. 16, pp. 344-352, 1976.
[36] E.Farzad and D. Ali, “Vibration analysis of multi-scale hybrid nanocomposite plates based on a Halpin-Tsai homogenization
model”, Composites Part B: Engineering, Vol. 173, 2019.
[37] Z. Yasser, Y.R. Kyong and P. Soo-Jin, “A developed equation for electrical conductivity of polymer carbon nanotubes (CNT)
nanocomposites based on Halpin-Tsai model”, Results in Physis, Vol. 14, 2019.
[38] F. Mustapha, J. Mohammad, Z. Abdelkabir and B. Naoual, “Bending analysis of functionally graded graphene oxide
powder-reinforced composite beams using a meshfree method”, Aerospace Science and Technology, Vol. 110, 2021.
[39] JD. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion and related problems”, Proc. Roy. Soc. London.,
Vol. 241, pp. 379-396, 1957.
[40] L. Sergey, V.B. Dmitrii, L. Anatolii and A. Elias, “Eshelby’s inclusion problem in the gradient theory of elasticity: Applications to
composite materials”, International Journal of Engineering Science, Vol. 49, pp. 1517-1525, 2011.
[41] T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions”, Acta.
Metall., Vol. 21, pp. 571-574, 1973.
[42] V.P. Tran, S. Brisard, Guilleminot, K. Sab, “Mori–Tanaka estimates of the effective elastic properties of
stress-gradient composites”, International Journal of Solids and Structures, Vol. 146, pp. 55-68, 2018.
[43] R. Sun, L. Li, S. Zhao, C. Feng, S. Kitipornchai and J. Yang, “Temperature-dependent mechanical properties of defective
grapheme Reinforced polymer nanocomposite”, Mech. Adv. Mater. Struct., pp. 1-10, 2019.
[44] F. Lin, Y. Xiang and H-S. Shen, “Temperature dependent mechanical properties of grapheme reinforced polymer
nanocomposite-A molecular dynamics simulation”, Compos Part B Eng, Vol. 111, pp. 261-269, 2017.
[45] M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z-Z. Yu and N. Koratkar, “Enhanced mechanical properties of nanocomposites at low
grapheme conten”, ACS Nano, Vol. 3, pp. 3884-3890, 2009.
[46] H-S. Shen, F. Lin and Y. Xiang, “Nonlinear bending and thermal postbuckling of functionally graded
graphene-reinforced composite laminated beams resting on elastic foundations”, Engineering Structures, Vol. 140, pp. 89-97,
2017.
[47] M. Rafuee, F. Nitzsche and M.R. Labrosse, “Modeling and mechanical analysis of multiscale fiber-reinforced graphene
composites: Nonlinear bending, thermal post-buckling and large amplitude vibration”, International Journal of Non-Linear
Mechanics, Vol. 103, pp. 104-112, 2018.
[48] B. Anirudh, T.B. Zineb, O. Polit, M. Ganapathi and G. Prateek, “Nonlinear bending of porous curved beams reinforced by
functionally graded nanocomposite graphene platelets applying an efficient shear flexible finite element approach”,
Mechanics, Vol. 119, 2020.
[49] M. Fouaidi, M. Jamal, A. Zaite and N. Beloaggadia, “Bending analysis of functionally graded graphene oxide
powder-reinforced composite beams using a meshfree method”, Aerospace Science and Technology, Vol. 110, 2021.
[50] J. Yang, H. Wu and S. Kitipornchai, “Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced
composite beams”, Composite Structures, Vol. 161, pp. 111-118, 2017.
[51] S. Kitipornchai, D. Chen and J. Yang, “Free vibration and elastic buckling of functionally graded porous beams reinforced by
graphene platelets”, Materials & Design, Vol. 116, pp. 656-665, 2017
[52] M. Song, L. Chen, J. Yang, W. Zhu and S. Kitipornchai, “Thermal buckling and postbuckling of edge-cracked functionally graded
multilayer graphene nanocomposite beams on an elastic foundation”, International Journal of Mechanical Sciences, Vol. 161-
162, 2019.
[53] M. Song, L. Chen, J. Yang, W. Zhu and S. Kitipornchai, “Free vibration and buckling analyses of edge-cracked functionally
graded multilayer graphene nanoplatelet-reinforced composite beams resting on an elastic foundation”, Journal of Sound and
Vibration, Vol. 458, pp. 89-108, 2019.
[54] M. Tam, Z. Yang, S. Zhao, H. Zhang, Y. Zhang and J. Yang, “Nonlinear bending of elastically restrained functionally graded
graphene nanoplatelet reinforced beams with an open edge crack”, Thin-Walled Structures, Vol. 156, 2020.
[55] H. Wu, J. Yang and S. Kitipornchai, “Dynamic instability of functionally graded multilayer graphene nanocomposite beams in
thermal environment”, Composite Structures, Vol. 162, pp. 244-254, 2017.
[56] Y. Wang, K. Xie, T. Fu and C. Shi, “Vibration response of a functionally graded graphene nanoplatelet reinforced composite
beam under two successive moving masses”, Composite Structures, Vol. 209, pp. 928-939, 2019.