GPS DELAY TIME AT LOW LATITUDE DURING SEVERE GEOMAGNETIC STORM

Authors

  • Thanapon Keokhumcheng 1Department of Engineering Education, School of Industrial Education and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520 Thailand
  • Nitipat Buakao 1Department of Engineering Education, School of Industrial Education and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520 Thailand
  • Chollada Pansong Department of Technical Education, Faculty of Technical Education, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110 Thailand

Keywords:

TEC, Delay time, Geomagnetic storm

Abstract

This study examines the impact of geomagnetic storms on Total Electron Content (TEC) variations and GPS signal delays in low-latitude regions, focusing on the March 24, 2023 (Dst = -163 nT, Kp = 8), and April 24, 2023 (Dst = -213 nT, Kp = 8) geomagnetic storms. Both events, classified as strong geomagnetic storms, significantly affected ionospheric conditions and GNSS signal propagation, particularly in Thailand. The analysis utilized TEC data from three GNSS stations (THCP in Chumphon, THBK in Bangkok, and THCM in Chiang Mai) and revealed substantial fluctuations in TEC and GPS signal delays during the storms. The results indicate that GPS signal delay times increased significantly on the storm days, peaking on March 24 and April 24, before gradually decreasing during the recovery phase. On March 24, 2023, the highest time delay was observed at THBK (10.70 ns), followed by THCP (10.43 ns) and THCM (9.27 ns), whereas on April 24, 2023, the maximum time delay occurred at THCP (9.59 ns), followed by THBK (9.56 ns) and THCM (9.85 ns) respectively.

References

Ansari, K., Park, K.-D., & Kubo, N. (2019). Linear time-series modeling of the GNSS based TEC variations over Southwest Japan during 2011–2018 and comparison against ARMA and GIM models. Acta Astronautica, 165, 248-258.

Blewitt, G. (1990). An automatic editing algorithm for GPS data. Geophysical Research Letters, 17(3), 199-202.

Brunini, C., Meza, A., Azpilicueta, F., Van Zele, M. A., Gende, M., & Díaz, A. (2004). A new ionosphere monitoring technology based on GPS. Astrophysics and Space Science, 290, 415-429.

Chernyshov, A. A., Miloch, W. J., Jin, Y., & Zakharov, V. I. (2020). Relationship between TEC jumps and auroral substorm in the high-latitude ionosphere. Scientific Reports, 10(1), 1-13.

Chinmaya, N., Tsai, L. C., Su, S. Y., & Galkin, I. A. (2016). Peculiar features of the low-latitude and mid-latitude ionospheric response to the St. Patrick's Day geomagnetic storm of 17 March 2015. Journal of Geophysical Research: Space Physics, 121(8), 7941-7960.

Coster, A. J., Gaposchkin, E. M., & Thornton, L. E. (1992). Real-time ionospheric monitoring system using GPS. Navigation, 39(2), 191-204.

Goodwin, G. L., Silby, J. H., Lynn, K. J. W., Breed, A. M., & Essex, E. A. (1995). GPS satellite measurements: Ionospheric slab thickness and total electron content. Journal of Atmospheric and Terrestrial Physics, 57(14), 1723-1732.

Helmboldt, J. F., Kassim, N. E., & Teare, S. W. (2015). Observations of the ionospheric impact of M-class solar flares on local and hemispheric scales. Earth and Space Science, 2(10), 387-402.

Hofmann-Wellenhof, B., Lichtenegger, H., & Collins, J. (1992). GPS -Global positioning system: Theory and practice (4th ed.). Springer -Verlag wien.

Jenan, R., Dammalage, T. L., & Panda, S. K. (2021). Ionospheric total electron content response to September-2017 geomagnetic storm and December-2019 annular solar eclipse over Sri Lankan region. Acta Astronautica, 180, 575-587.

Kenpankho, P., Chaichana, A., Trachu, K., Supnithi, P., & Hozumi, K. (2021). Real-time GPS receiver bias estimation. Advances in Space Research, 68(5), 2152-2159.

Kenpankho, P., Supnithi, P., & Nagatsuma, T. (2013). Comparison of observed TEC values with IRI-2007 TEC and IRI-2007 TEC with optional foF2 measurements predictions at an equatorial region, Chumphon, Thailand. Advances in Space Research, 52(10), 1820-1826.

Kenpankho, P., Watthanasangmechai, K., Supnithi, P., Tsugawa, T., & Maruyama, T. (2011). Comparison of GPS TEC measurements with IRI TEC prediction at the equatorial latitude station, Chumphon, Thailand. Earth, Planets and Space, 63, 365-370.

Keokhumcheng, T., & Kenpankho, P. (2025). The study of total electron content on ionosphere by using single frequency GPS receiver. Advances in Space Research, 75(5), 4245-4259.

Klobuchar, J. A. (1986). Design and Characteristics of the GPS ionospheric time delay algorithm for single frequency users. Proceedings of the PLANS-86 conference, 280-286, New York, Institute of Electrical and Electronic Engineers, Las Vegas, NV.

Kumar, K. V., Maurya, A. K., Kumar, S., & Singh, R. (2016). 22 July 2009 total solar eclipse induced gravity waves in ionosphere as inferred from GPS observations over EIA. Advances in Space Research, 58(9), 1755-1762.

Liu, J., Zhao, B., & Liu, L. (2010). Time delay and duration of ionospheric total electron content responses to geomagnetic disturbances. Annales Geophysicae, 28(3), 795-805.

Ma, G., & Maruyama, T. (2003). Derivation of TEC and estimation of instrumental biases from GEONET in Japan. Annales Geophysicae, 21(10), 2083-2093.

Maggiolo, R., Hamrin, M., De Keyser, J., Pitkänen, T., Cessateur, G., Gunell, H., & Maes, L. (2017). The delayed time response of geomagnetic activity to the solar wind. Journal of Geophysical Research: Space Physics, 122(11), 11,109-11,127.

Marini-Pereira, L., Lourenço, L. F. D., Sousasantos, J., Moraes, A. O., & Pullen, S. (2020). Regional ionospheric delay mapping for low-latitude environments. Radio Science, 55(12), 1-16.

Pan, L., & Guo, F. (2018). Real-time tropospheric delay retrieval with GPS, GLONASS, Galileo and BDS data. Scientific Reports, 8(1), 1-17.

Pi, X., Mannucci, A. J., Lindqwister, U. J., & Ho, C. M. (1997). Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophysical Research Letters, 24(18), 2283-2286.

Ratnam, D. V., Sarma, A. D., Srinivas, V. S., & Sreelatha, P. (2011). Performance evaluation of selected ionospheric delay models during geomagnetic storm conditions in low-latitude region. Radio Science, 46(03), 1-6.

Reddy, C. A. (1986). The equatorial ionosphere. Indian Journal of Radio & Space Physics, 15(5&6), 247-263.

Reddybattula, K. D., Panda, S. K., Ansari, K., & Peddi, V. S. R. (2019). Analysis of ionospheric TEC from GPS, GIM and global ionosphere models during moderate, strong, and extreme geomagnetic storms over Indian region. Acta Astronautica, 161, 283-292.

Saito, S., Sunda, S., Lee, J., Pullen, S., Supriadi, S., Yoshihara, T., Terkildsen, M., Lecat, F., & ICAO APANPIRG Ionospheric Studies Task Force. (2017). Ionospheric delay gradient model for GBAS in the Asia-Pacific region. GPS Solutions, 21, 1937-1947.

Sedeek, A. (2020). Ionosphere delay remote sensing during geomagnetic storms over Egypt using GPS phase observations. Arabian Journal of Geosciences, 13(811), 1-15.

Serafimov, K. B., Arshinkov, I. S., Bochev, A. Z., Petrunova, M. H., Stanev, G. A., & Chapkanov, S. K. (1982). A measuring equipment for electric and magnetic fields in the range of the ionosphere-Magnetosphere plasma mounted aboard the “Intercosmos-Bulgaria 1300” satellite. Acta Astronautica, 9(6-7), 397-399.

Skone, S., & de Jong, M. (2000). The impact of geomagnetic substorms on GPS receiver performance. Earth, Planets and Space, 52, 1067-1071.

Verkhoglyadova, O., Maus, N., & Meng, X. (2021). Classification of high density regions in global ionospheric maps with neural networks. Earth and Space Science, 8(7), 1-12.

Walker, J. K. (1989). Spherical cap harmonic modelling of high latitude magnetic activity and equivalent sources with sparse observations. Journal of Atmospheric and Terrestrial Physics, 51(2), 67-80.

Zhang, Z., Guo, F., & Zhang, X. (2018). The effects of higher-order ionospheric terms on GPS tropospheric delay and gradient estimates. Remote Sensing, 10(10), 1-15.

Zhang, S., He, L., & Wu, L. (2020a). Statistical study of loss of GPS signals caused by severe and great geomagnetic storms. Journal of Geophysical Research: Space Physics, 125(9), 1-16.

Zhang, Y., Wu, Z., Feng, J., Xu, T., Deng, Z., & Zhen, W. (2020b). Statistical study of the time delay of ionospheric TEC storms to geomagnetic storms in Taoyuan, Taiwan. Advances in Space Research, 65(1), 86-94.

Zhang, Y., Wu, Z., Feng, J., Xu, T., Deng, Z., Ou, M., & Xiong, W. (2021). Time delay of ionospheric TEC storms to geomagnetic storms and pre-storm disturbance events in East Asia. Advances in Space Research, 67(5), 1535-1545.

Zhbankov, G. A., Danilkin, N. P., & Maltseva, O. A. (2022). Influence of the ionosphere on the accuracy of the satellite navigation system. Acta Astronautica, 190, 194-201.

Zhu, F., Zhang, H., Huang, L., Li, X., & Feng, P. (2020). Research on absolute calibration of GNSS receiver delay through clock-steering characterization. Sensors, 20(21), 1-14.

Downloads

Published

2025-04-23

Issue

Section

Research Articles