THE CHARACTERISTICS OF TOTAL ELECTRON CONTENT DISTURBANCES AT LOW LATITUDES DURING SEVERE GEOMAGNETIC STORM EVENTS ON MARCH 24 AND APRIL 24, 2023

Authors

  • Chollada Pansong Department of Technical Education, Faculty of Technical Education, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110 Thailand
  • Samatchaya Maichuen 2Department of Engineering Education, School of Industrial Education and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520 Thailand
  • Pattawut Wongsak Department of Engineering Education, School of Industrial Education and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520 Thailand

Keywords:

Geomagnetic storm, GPS TEC, IRI TEC, Low latitude

Abstract

This study investigated the Total Electron Content (TEC) characteristics at two different low latitudes and three different TEC sources during the severe geomagnetic storms, focusing on the events of March 24, 2023, and April 24, 2023. TEC data were collected from GNSS receivers in Chumphon (THCP station: 10.724°N, 99.375°E), and Bangkok (THBK station: 13.729°N, 100.780°E), Thailand, using three sources: GNSS satellite receivers, the International GNSS Service (IGS), and the International Reference Ionosphere (IRI). GPS TEC, IGS TEC, and IRI TEC values were compared among them. The correlation coefficient between geomagnetic storm intensity and ionospheric TEC disturbances was analyzed. The results show that geomagnetic storm levels strongly influence ionospheric TEC disturbances. TEC values typically increase during storms and return to normal within a few days. During the storm events, TEC increased up to 75% over Chumphon and 10-35% over Bangkok. The strong geomagnetic storms exhibited positive correlations with higher TEC values, while quiet periods showed no significant decreases below baseline levels, indicating a negative correlation coefficient.

 

References

Adolfs, M., Hoque, M. M., & Shprits, Y. Y. (2022). Storm-time relative total electron content modelling using machine learning techniques. Remote Sensing, 14(23), 1-17.

Ali, O. H., Zaourar, N., Fleury, R., & Amory-Mazaudier, C. (2021). Transient variations of vertical total electron content at low latitude during the period 2013–2017. Advances in Space Research, 68(12), 4857-4871.

Bilitza, D. (1990). International Reference Ionosphere 1990 (Report no. NSSDC/WDC-A-R&S 90-22). National Space Science Data Center (NSSDC) and World Data Center A for Rockets and Satellite (WDC-AR &S). https://ntrs.nasa.gov/api/citations/19910021307/downloads/19910021307.pdf.

Bilitza, D. (2001). International reference ionosphere 2000. Radio Science, 36(2), 261-275.

Bilitza, D., & Rawer, K. (1996). International Reference Ionosphere, in: W. Dieminger, G. Hartmann and R. Leitinger (Eds.), The upper atmosphere - data analysis and interpretation (pp. 735-772). Springer-Verlag.

Bilitza, D., & Reinisch, B. W. (2008). International Reference Ionosphere 2007: Improvements and new parameters. Advances in Space Research, 42(4), 599-609.

Blewitt, G. (1990). An automatic editing algorithm for GPS data. Geophysical Research Letters, 17(3), 199-202.

Bojilova, R., & Mukhtarov, P. (2023). Comparative analysis of global and regional ionospheric responses during two geomagnetic storms on 3 and 4 February 2022. Remote Sensing, 15(7), 1-23.

Brunini, C., Meza, A., Azpilicueta, F., Van Zele, M. A., Gende, M., & Díaz, A. (2004). A new ionosphere monitoring technology based on GPS. Astrophysics and Space Science, 290, 415-429.

Chen, Z., Wang, J. S., Deng, Y., & Huang, C. M. (2017). Extraction of the geomagnetic activity effect from TEC data: A comparison between the spectral whitening method and 28 day running median. Journal of Geophysical Research: Space Physics, 122(3), 3632-3639.

Chernyshov, A. A., Miloch, W. J., Jin, Y., & Zakharov, V. I. (2020). Relationship between TEC jumps and auroral substorm in the high-latitude ionosphere. Scientific Reports, 10(1), 1-13.

de Paula, E. R., de Oliveira, C. B., Caton, R. G., Negreti, P. M., Batista, I. S., Martinon, A. R., Neto, A. C., Abdu, M. A., Monico, J. F. G., Sousasantos, J., & Moraes, A. O. (2019). Ionospheric irregularity behavior during the September 6–10, 2017 magnetic storm over Brazilian equatorial–low latitudes. Earth, Planets and Space, 71(42), 1-15.

Dugassa, T., Habarulema, J. B., & Nigussie, M. (2019). Investigation of the relationship between the spatial gradient of Total Electron Content (TEC) between two nearby stations and the occurrence of ionospheric irregularities. In I. A. Daglis, C. Jacobi, & I. Mann (Eds.), Annales Geophysicae (Vol. 37, No. 6, pp. 1161-1180). Copernicus.

Goodwin, G. L., Silby, J. H., Lynn, K. J. W., Breed, A. M., & Essex, E. A. (1995). GPS satellite measurements: Ionospheric slab thickness and total electron content. Journal of Atmospheric and Terrestrial Physics, 57(14), 1723-1732.

Hofmann-Wellenhof, B., Lichtenegger, H., & Collins, J. (2012). Observables. In Global positioning system: Theory and practice (pp. 87-131). Springer-Verlag Wien GmbH.

Jenan, R., Dammalage, T. L., & Panda, S. K. (2021). Ionospheric total electron content response to September-2017 geomagnetic storm and December-2019 annular solar eclipse over Sri Lankan region. Acta Astronautica, 180, 575-587.

Kenpankho, P., Watthanasangmechai, K., Supnithi, P., Tsugawa, T., & Maruyama, T. (2011). Comparison of GPS TEC measurements with IRI TEC prediction at the equatorial latitude station, Chumphon, Thailand. Earth, Planets and Space, 63, 365-370.

Klimenko, M. V., Klimenko, V. V., Zakharenkova, I. E., Ratovsky, K. G., Korenkova, N. A., Yasyukevich, Y. V., MyInikova, A. A., & Cherniak, I. V. (2017). Similarity and differences in morphology and mechanisms of the fo F2 and TEC disturbances during the geomagnetic storms on 26–30 September 2011. In Annales Geophysicae (Vol. 35, No. 4, pp. 923-938). Copernicus.

Kumar, K. V., Maurya, A. K., Kumar, S., & Singh, R. (2016). 22 July 2009 total solar eclipse induced gravity waves in ionosphere as inferred from GPS observations over EIA. Advances in Space Research, 58(9), 1755-1762.

Li, G., Ning, B., Zhao, X., Sun, W., Hu, L., Xie, H., Liu, K., & Ajith, K. K. (2019). Low latitude ionospheric TEC oscillations associated with periodic changes in IMF Bz polarity. Geophysical Research Letters, 46(16), 9379-9387.

Ma, G., & Maruyama, T. (2003, October). Derivation of TEC and estimation of instrumental biases from GEONET in Japan. In Annales Geophysicae (Vol. 21, No. 10, pp. 2083-2093). Copernicus.

Mansilla, G. A. (2019). Behavior of the Total electron content over the Arctic and Antarctic sectors during several intense geomagnetic storms. Geodesy and Geodynamics, 10(1), 26-36.

Mukaka, M. M. (2012). A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal, 24(3), 69-71.

Nava, B., Rodríguez-Zuluaga, J., Alazo-Cuartas, K., Kashcheyev, A., Migoya-Orué, Y., Radicella, S. M., Radicella, C., Armory-Mazaudier, C., & Fleury, R. (2016). Middle-and low-latitude ionosphere response to 2015 St. Patrick's Day geomagnetic storm. Journal of Geophysical

Research: Space Physics, 121(4), 3421-3438.

Nayak, C., Tsai, L. C., Su, S. Y., Galkin, I. A., Tan, A. T. K., Nofri, E., & Jamjareegulgarn, P. (2016). Peculiar features of the low-latitude and midlatitude ionospheric response to the St. Patrick's Day geomagnetic storm of 17 March 2015. Journal of Geophysical Research: Space Physics, 121(8), 7941-7960.

Pi, X., Mannucci, A. J., Lindqwister, U. J., & Ho, C. M. (1997). Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophysical Research Letters, 24(18), 2283-2286.

Rao, S. S., Galav, P., Sharma, S., & Pandey, R. (2013). Low-latitude TEC variability studied from magnetically conjugate locations along 73° E longitude. Journal of Atmospheric and Solar-Terrestrial Physics, 104, 1-6.

Ratovsky, K. G., Klimenko, M. V., Dmitriev, A. V., & Medvedeva, I. V. (2022). Relation of extreme ionospheric events with geomagnetic and meteorological activity. Atmosphere, 13, 1-15.

Rawer, K., Bilitza, D., & Ramakrishnan, S. (1978a). Goals and status of the International Reference Ionosphere. Reviews of Geophysics, 16(2), 177-181.

Rawer, K., Bilitza, D., Ramakrishnan, S., & Sheikh, N. (1978b). Intentions and build-up of the International Reference Ionosphere. Operational Modelling of the Aerospace Propagation Environment, 1&2, 6.1-6.10.

Reddy, C. A. (1986). The equatorial ionosphere. Indian Journal of Radio & Space Physics, 15(5&6), 247-263.

Reddybattula, K. D., Panda, S. K., Ansari, K., & Peddi, V. S. R. (2019). Analysis of ionospheric TEC from GPS, GIM and global ionosphere models during moderate, strong, and extreme geomagnetic storms over Indian region. Acta Astronautica, 161, 283-292.

Serafimov, K. B., Arshinkov, I. S., Bochev, A. Z., Petrunova, M. H., Stanev, G. A., & Chapkanov, S. K. (1982). A measuring equipment for electric and magnetic fields in the range of the ionosphere—Magnetosphere plasma mounted aboard the “Intercosmos-Bulgaria 1300” satellite. Acta Astronautica, 9(6-7), 397-399.

Skone, S., & de Jong, M. (2000). The impact of geomagnetic substorms on GPS receiver performance.

Earth, Planets and Space, 52, 1067-1071.

Tsurutani, B. T., Lakhina, G. S., & Hajra, R. (2020). The physics of space weather/Solar-Terrestrial Physics (STP): what we know now and what the current and future challenges are. Nonlinear Processes in Geophysics, 27(1), 75-119.

Zhou, Y. L., Lühr, H., Xiong, C., & Pfaff, R. F. (2016). Ionospheric storm effects and equatorial plasma irregularities during the 17–18 March 2015 event. Journal of Geophysical Research: Space Physics, 121(9), 9146-9163.

Downloads

Published

2025-04-24

Issue

Section

Research Articles