Intelligent System Based Supervision for Energy Management of Water Chiller Plant

Main Article Content

มนฤทัย ระดีรมย์

Abstract

- For almost a decade, intelligent system have shown great potentials in solving non-linear control problems. This paper exhibits a possibility of using a neuro-fuzzy to advise a chiller plant. This plant, located at the Building No.11 of Rangsit University, is consisted of three water chillers. Nonlinear dynamic characteristics, resulting from outdoor conditions, equipment within the plant such as pumps, modulation valve, are discussed herein. The objective of this research is to minimize energy cost while maintaining high performance of the plant. In this paper, identification and prediction of non-linear discrete time system using neuro-fuzzy system are investigated. To develop an algorithm for achieving such an objective, first step is to learn relationship of outdoor temperature, humidity, and cooling load of building that are the plant dynamics from historical data. After being trained completely, the neuro-fuzzy system is used to predict the cooling load at the Building No. 11Rangsit University and operating optimal points of the water chiller plant. We use the visual studio to develop an advised chiller plant management program. This program learns the information from both historical and present data of the chiller plant. After that, we compare energy cost between before (May-July 2014) and after (August-October 2014) using advisory management of chiller plant program. The system can be reduce electrical cost within 5 %. Furthermore, it is continuously trained by plant operators

Article Details

How to Cite
[1]
ระดีรมย์ ม., “Intelligent System Based Supervision for Energy Management of Water Chiller Plant”, JIST, vol. 5, no. 1, pp. 23–34, Jun. 2015.
Section
Research Article: Soft Computing (Detail in Scope of Journal)

References

1. ผศ. สุรพล พฤกษพานิช, 2529, การปรับอากาศ : หลักการและระบบ, หจก. ฟิสิกส์เซนเตอร์.

2. สมศักดิ์ สุโมตยกุล, 2542. หลักการทำงานและเทคนิคการตรวจซ่อมเครื่องทำความเย็นและเครื่องปรับอากาศ. ซีเอ็ดยูเคชั่น. กรุงเทพฯ. 444 หน้า.

3. อัครเดช สินธุภัค, 2543. การปรับอากาศ. สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง. พิมพ์ครั้งที่ 4. กรุงเทพฯ. 570หน้า.

4. เฮนส์, โรเจอร์ ดับเบิลยู, 2540. ระบบควบคุมสำหรับการทำความร้อน การระบายอากาศ และการปรับอากาศ. กรุงเทพฯ. 336 หน้า.

5. กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน, 2552, รายงานไฟฟ้าของประเทศไทยปี 2551.

6. W. F. Stoecker and J. W. Jones,1993, Refrigeration & Air Conditioning , McGraw-Hill International Edition, 2 nd Ed.

7. Technology Fact Sheet, 2002, Whole-House Ventilation System : Improved control of Air Quality, Building Technology Program, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, USA.

8. Chua, K. J., Ho, J. C. and Chou, S. K., 2007, A comparative study of different control strategies for indoor air humidity, ENERGY AND BUILDINGS, 39 (5), pp. 537-545.

9. Hirunlabh, J., Charoenwat, R., Khedari, J. and Teekasap, Sombat, 2007, Feasibility study of desiccant air-conditioning system in Thailand, BUILDING AND ENVIRONMENT, 42 (2), pp. 572-577.

10. Nagengast, Bernard and Groff, Gerald, 2007, Keeping cool - Timeline of refrigeration & air conditioning, ASHRAE JOURNAL, 49 (3), pp. 64.

11. Guo CY, Song Q and Cai WJ, 2007, A neural network assisted cascade control system for air handling unit, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 54 (1), pp 620-628.

12. Chang YC, 2007, Sequencing of chillers by estimating chiller power consumption using artificial neural networks, BUILDING AND ENVIRONMENT 42 (1), pp. 180-188.

13. Singh J, Singh N and Sharma JK, 2006, Fuzzy modeling and control of HVAC systems - A review, JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH 65 (6), pp. 470-476.

14. Aprea C, Mastrullo R, and Renno C, 2006, Experimental analysis of the scroll compressor performances varying its speed, APPLIED THERMAL ENGINEERING 26 (10), pp. 983-992.

15. Thompson R and Dexter A, 2005, A fuzzy decision-making approach to temperature control in air-conditioning systems, CONTROL ENGINEERING PRACTICE 13 (6), pp. 689-698

16. Chu CM, Jong TL and Huang YW, 2005, Thermal comfort control on multi-room fan coil unit system using LEE-based fuzzy logic, ENERGY CONVERSION AND MANAGEMENT 46 (9-10), pp. 1579-1593.

14. Lee, W. Y. and M.; Kelly, G. E., Fault Diagnosis of an Air – Handling Unit Using Artificial Neural Networks, ASHRAE Transactions., Vol. 102, Pt 1., PP. 540-549, 1996.

18. Teeter, J. and Chow, M. Y., Application of Function Link Neural Network to HVAC Thermal Dynamics System Identification, Technical Report, Department of Electrical and Computer Engineering, North Carolina State University. [19] Chung-Tai Wu and Brian A. Rock, Performance of Fixed, Air-Side Economizer, and Neural Network Demand-Controlled Ventilation in CAV Systems, ASHRAE Transactions. , 1998

19. Babuska, A. R. 2002. Neuro-fuzzy methods for modeling and identification. Recent Advances in intelligent Paradigms and Application, Springer-Verlag : 161–186..

20. Monruthai Radeerom, Chonawat Srisa-an, M. L. Kulthon Kasemsan, Stock Price Prediction Based on Neurofuzzy System for Thai Stock Index. IMECS 2007, Hong Kong, pp. 833-838.