Urban Growth Monitoring in Chanthaburi Using Remote Sensing Data on Google Earth Engine

Main Article Content

Kumpee Teeravech
Kanitta Yarak
Tobthong Chancharoen

Abstract

Google Earth Engine remote sensing data, consisting of 102 images acquired by LANDSAT-5 TM and LANDSAT-8 OLI satellites, were utilized to classify six land use categories using the Random Forest algorithm. The primary objective was to analyze land use patterns spanning a temporal span of three decades. To achieve this, we deployed machine learning techniques, specifically the Random Forest algorithm, with the aim of examining temporal changes and identifying patterns related to urban expansion. Our analysis revealed that between 1992 and 2012, herbaceous and field crops were the predominant land use categories, with areas of 3,404.96 sq.km., 2,596.02 sq.km., 2,404.79 sq.km., 2,604.32 sq.km., and 2,623.44 sq.km. at five-year intervals. However, a significant shift occurred in 2017 and 2022 when land use transitioned toward perennial fruit and woody crops, becoming the top-ranking land use category with areas of 2,695.83 sq.km. and 2,516.83 sq.km. This transformation was accompanied by a simultaneous increase in urban expansion, indicating a noticeable departure from the cultivation of herbaceous and field crops. Moreover, there was a noticeable decline in the extent of land allocated to perennial fruit crops. Projections based on the CA-Markov model predict a sustained trend of urban expansion, with the urban area and infrastructure expected to reach 115.15 sq.km. and 126.02 sq.km. by 2027 and 2032, respectively.

Article Details

How to Cite
[1]
K. Teeravech, K. Yarak, and T. Chancharoen, “Urban Growth Monitoring in Chanthaburi Using Remote Sensing Data on Google Earth Engine”, JIST, vol. 13, no. 2, pp. 69–78, Dec. 2023.
Section
Research Article: Web Systems and Technologies (Detail in Scope of Journal)

References

วรรโณบล ควรอาจ และ ผกามาศ ถิ่นพังงา, “กระบวนการกลายเป็นเมืองในประเทศไทย,” [ออนไลน์], 2556, เข้าถึงได้: https://www.tei.or.th/thaicityclimate/public/research -46.pdf. [เข้าถึงเมื่อ: 10 มกราคม 2566.].

UN, “World Population Prospects 2019: Data booklet”, [Online], pp. 2-4, 2019, Available: https://www.un.org.

development.desa.pd/files/files/documents/2020/Jan/un_2017_world_population_prospects-2017_revision_ databooklet.pdf. [Accessed on: Feb. 7, 2023.].

สำนักงานคณะกรรมการนโยบายเขตพัฒนาพิเศษภาคตะวันออก (สกพอ.), “ความเป็นมาของ อีอีซี,”, [ออนไลน์], 2566, เข้าถึงได้: https://www.eeco.or.th/th/ government-initiative. [เข้าถึงเมื่อ: 15 มกราคม 2566].

ปวีณา เปรมเจริญ, “การประยุกต์ระบบสารสนเทศภูมิศาสตร์ศึกษาการใช้ที่ดินในเขตเทศบาลเมืองแสนสุข จังหวัดชลบุรี,”, วิทยานิพนธ์ วท.ม. (ภูมิสารสนเทศเพื่อการจัดการ), บัณฑิตวิทยาลัยมหาวิทยาลัยเกษมบัณฑิต, กรุงเทพฯ, 2555.

กรีติ สงเอียด, “ปัจจัยที่มีผลต่อการใช้ประโยชน์ที่ดินเขตชายเมือง: กรณีศึกษาเขตตลิ่งชัน กรุงเทพมหานคร”, วิทยานิพนธ์ ผ.ม. (สาขาการวางผังเมืองและสภาพแวดล้อม), บัณฑิตวิทยาลัย มหาวิทยาลัย เกษตรศาสตร์, กรุงเทพฯ, 2555.

S. Sah, “Machine Learning: A Review of Learning Types,”, ResearchGate, no. July, 2020, doi: 10.20944/ preprints202007.0230.v1.

A. D. Kulkarni and B. Lowe, “Random Forest Algorithm for Land Cover Classification,”, Int. J. Recent Innov. Trends Comput. Commun., vol. 4, no. 3, pp. 58–63, 2016.

H. Guan, J. Yu, J. Li, and L. Luo, “Random Forests-Based Feature Selection for Land-Use Classification Using Lidar Data and Ortho-imagery,”, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XXXIX-B7, no. September, pp. 203–208, 2012, doi: 10.5194/ isprsarchives-xxxix-b7-203-2012.

Z. Zhang, G. Hörmann, J. Huang, and N. Fohrer, “A Random Forest-Based CA-Markov Model to Examine the Dynamics of Land Use/Cover Change Aided with Remote Sensing and GIS,” Remote Sens., vol. 15, no. 8, 2023, doi: 10.3390/rs15082128.

P. Chotchaiwong and S. Wijitkosum, “Predicting urban expansion and urban land use changes in Nakhon Ratchasima city using a CA-Markov model under two different scenarios,” Land, vol. 8, no. 9, 2019, doi: 10.3390/land8090140.

K. Kityuttachai, N. K. Tripathi, T. Tipdecho, and R. Shrestha, “CA-Markov analysis of constrained coastal urban growth modeling: Hua hin Seaside City, Thailand,” Sustain., vol. 5, no. 4, pp. 1480–1500, 2013, doi: 10.3390/su5041480.

S. Tonsiri, W. Arunpraparut, and W. Khunrattanasiri, “การคาดการณ์การเปลี่ยนแปลงการใช้ประโยชน์ที่ดินด้วยแบบจำลอง CA-Markov บริเวณเขตรักษาพันธุ์สัตว์ป่าเขาสอยดาว จังหวัดจันทบุรี,” vol. 37, no. 2, pp. 138–150, 2023.

C. Chompuchan and W. Taesombat, “การคาดการณ์การใช้ประโยชน์ที่ดินในลุ่มน้ำสาขาย่อยห้วยผาก จังหวัดเพชรบุรี ด้วยแบบจำลอง CA-Markov Land use forecasting in Huai Phak subbasin, Phetchaburi province using CA-Markov model,” no. July, 2020.

สำนักงานคณะกรรมการพัฒนาการเศรษฐกิจและสังคมแห่งชาติ, “แผนพัฒนาเศรษฐกิจและสังคมแห่งชาติ ฉบับที่ 12 พ.ศ. 2560-2564,”, [ออนไลน์], 2566, เข้าถึงได้: https://www.nesdc.go.th/ewt_dl_link.php?nid=6422, [เข้าถึงเมื่อ: 18 มกราคม 2566.].

N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, “Google Earth Engine: Planetary-scale geospatial analysis for everyone,”, Remote Sens. Environ., vol. 202, pp. 18–27, 2017, doi: 10.1016 /j.rse.2017.06.031.

M. Amani et al., “Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review,”, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, no. September, pp. 5326–5350, 2020, doi: 10.1109 /JSTARS.2020.3021052.

J.W. Rouse, R.H. Haas, J.A. Schell, and D.W. Deering, “Monitoring vegetation systems in the Great Plains with ERTS”, In: S.C. Freden, E.P. Mercanti, and M. Becker (eds) Third Earth Resources Technology Satellite–1 Syposium. Volume I: Technical Presentations, NASA SP-351, NASA, Washington, D.C., pp. 309-317, 1974.

Z. Yong, G. Jingqing, and S. Ni., “Use of normalized difference built-up index in automatically mapping urban areas from TM imagery,”, International Journal of Remote Sensing - INT J REMOTE SENS, 24, pp. 583-594, 2003, doi:10.1080/01431160304987.

M. S. Mondal, N. Sharma, P. K. Garg, and M. Kappas, “Statistical independence test and validation of CA Markov land use land cover (LULC) prediction results,” Egypt. J. Remote Sens. Sp. Sci., vol. 19, no. 2, pp. 259–272, 2016, doi: 10.1016/j.ejrs.2016.08.001.