Cooling Holstein cows and heifers before parturition during summer: physiological responses prepartum and productive responses postpartum

Main Article Content

Leonel Avendano

Abstract

The aim was to compare physiological parameters prepartum and productive responses postpartum of multiparous cows, and first-calf heifers cooled 30 d before parturition.  Twelve cows and twelve heifers were subjected to a cooling system for 30 d before the predicted calving date. Before calving, respiration frequency (RF) was measured twice a day (AM and PM) once a week; also, a blood sample was obtained from the coccygeal vein once a week for a biochemical profile. After calving, productive parameters measured were calf birth weight and growth until weaning, colostrum, milk quality, and milk production. Mature cows had 6.5% less RF (P<0.05) than heifers during the morning, but this difference increased to 23% during the afternoon (P<0.01). Mature cows exhibited higher (P<0.05) mean corpuscular volume, mean corpuscular hemoglobin, and platelet distribution width than heifers; however, heifers showed higher (P<0.05) red blood cell count than mature cows. In comparison, colostrum fat was higher (P<0.05) in heifers, protein, SNF, and density were similar between groups. Milk quality did not differ between cows and heifers, but milk yield at 30, 60, 90, 120, and 150 d was higher (P<0.05) in mature cows than in heifers. Calf mortality, calf birth weight, body weight at 30 and 60 d, as well as daily weight gain at 60 d, were similar in both groups of mothers. In conclusion, mature cows showed better physiological and productive responses than heifers when cooled with spray and fans for 30 d prepartum under hot and dry stressful conditions.

Article Details

How to Cite
Avendano, L. (2022). Cooling Holstein cows and heifers before parturition during summer: physiological responses prepartum and productive responses postpartum. Journal of Science and Agricultural Technology, 3(2), 37–46. https://doi.org/10.14456/jsat.2022.10
Section
Research Article

References

Adin, G., Gelman, A., Solomon, R., Flamenbaum, I., Nikbachat, M., Yosef, E., Zenou, A., Shamay, A., Feuermann, Y., Mabjeesh, S.J., and Miron, J. 2009. Effect of cooling cows under heat load conditions on mammary gland enzymatic activity, intake of food and water, and performance during the dry period and after parturition. Liv. Sci. 124: 189-195. https://doi.org/10.1016/j.livsci.2009.01.014.

Akers, R. M. 2017. A 100-year review: Mammary development and lactation. J. Dairy Sci. 100: 10332–10352. https://doi.org/10.3168/jds.2017-12983.

Armstrong, D.V. 1994. Heat stress interaction with shade and cooling. J. Dairy Sci. 77:2044-2050. https://doi.org/

3168/jds.S0022-0302(94)77149-6

Atashi, H., and Asaadi, A. 2019. Association between gestation length and lactation performance, lactation curve, calf birth weight and dystocia in Holstein dairy cows in Iran. Anim. Reprod., 16(4): 846-852. https://doi.org/10.21451/1984-3143-AR2019-0005.

Avendaño-Reyes, L., Álvarez-Valenzuela, F.D., Correa, A., Fadel, J.G., and Robinson, P.H. 2008. Is soaking cows during dry period an effective management tool to reduce heat stress and improve postpartum productivity? J. Applied Anim. Res. 34: 97-100. https://doi.org/10.1080/

2008.9706948.

Aydogdu, U., and Guzelbektes, H. 2018. Effect of colostrum composition on passive calf immunity in primiparous and multiparous dairy cows. Vet. Med. 63: 1-11. https://doi.org/10.17221/40/2017-VETMED.

Bhan, C., Singh, S.V., Hooda, O.K., Upadhyay, R.C., Beenam, R.C., and Vaidya, M. 2012. Influence of temperature variability on physiological, hematological and biochemical profile of growing and adult sahiwal cattle. J. Environ. Res. Develop. 7(2): 986-994.

Baumgard, L.H., and Rhoads Jr, R.P. 2013. Effects of heat stress on postabsorptive metabolism and energetics. Annu. Rev. Anim. Biosci. 1:311–337. https://doi.org/10.1146/annurev-animal-031412-103644.

Berman, A. J. 2005. Estimates of heat stress relief needs for Holstein dairy cows. J. Anim. Sci. 83:1377-1384.https://doi.org/10.2527/2005.8361377x.

Carabano, M.J., Bachagha K., Ramon M., and Diaz, C. 2014. Modeling heat stress effect on Holstein cows under hot and dry conditions: selection tools. J Dairy Sci. 97:7889–7904. https://doi.org/10.3168/jds.2014-8023.

Castro-Montoya, J.E., and Corea, E.E. 2021. Heat stress effects in primiparous and multiparous lactating crossbred cows under a warm environment and their responses to a cooling treatment. Anim. Prod. Sci. 61: 577-585. https://doi.org/10.1071/AN19398.

Collier, R. J., Doelger, S. G., Head, H. H., Thatcher, W. W., and Wilcox, C. J. 1982.Effects of heat stress during pregnancy on maternal hormone concentrations, calf birth weight and postpartum milk yield of Holstein cows. J. Anim. Sci. 54:309–319. https://doi.org/10.2527/jas1982.542309x.

Fabris, T. F., Laporta, J., Skibiel, A. L., Corra, F. N., Dado-Senn, B., Wohlgemuth, S. E., andDahl, G.E. 2019. Effect of heat stress during early, late, and entire dry period on dairy cattle. J. Dairy Sci. 102: 5647–5656. https://doi.org/10.3168/jds.2018-15721.

Fahey, M.J., Fischer, A.J., Steele, M.A., and Greenwood, S.L. 2020. Characterization of the colostrum and transition milk proteomes from primiparous and multiparous Holstein dairy cows. J. Dairy Sci. 103:1993-2005. https://doi.org/10.3168/jds.2019-17094.

Fuquay, J.W. 1981. Heat stress as it affects animal production. J. Anim. Sci. 52:164-174. https://doi.org/10.2527/

jas1981.521164x.

Gomes, C.G., Zuniga, J.E., Karakaya, E., Greco, L.F., Sinedino, L.D.P., Martinez, R., Binotto, R.S., Ribeiro, E.S., Leopoldo, P.M., Engstrom, M.A., Driver, J.P., Santos, J.E.P. and Staples, C.R. 2013. Effects of evaporative cooling prepartum and vitamin E supplementation on immune function of Holstein cows during summer in Florida. J. Dairy Sci. 97(Suppl. 1):725. (Abstr.).

González, F.E., Linares, L.A., Mendoza, E.A. 2016. Evaluación del efecto de un sistema de enfriamiento sobre parámetros fisiológicos y productivos en ganado lechero de la zona costera paracentral de El Salvador. B.S. Thesis. Facultad de Ciencias Agronómicas, Universidad de El Salvador, San Salvador, El Salvador.

Hansen, J., Ruedy, R., Sato, M., and Lo, K. 2010. Global surface temperature change. Reviews of Geophysics. 48: 1-29. https://doi.org/10.1029/2010RG000345.

Hansen, P. J. 2019. Reproductive physiology of heat-stressed dairy cows: implications for fertility and assisted reproduction. Anim. Repro 16:497–507. https://doi: 10.21451/1984-3143-ar2019-0053.

Herbut P., Angrecka, S., and Walczak, J. 2018. Environmental parameters to assessing of heat stress on dairy cattle – a review. Int. J. Biomet. 62: 2089-2097. https://doi.org/10.1007/s00484-018-1629-9

INEGI. 2017. Anuario estadístico y geográfico de Baja California. Instituto Nacional de Estadística y Geografía. Gobierno del Estado de Baja California. México.https://www.datatur.sectur.gob.mx/ITxEF_Docs/BCN_ANUARIO_PDF.pdf.

Karimi, M.T., Ghorbani, G.R., Kargar, S., and Drackely, J.K. 2015. Late gestation heat stress abatement on performance and behavior of Holstein dairy cows. J. Dairy Sci. 98: 1-11. https://doi.org/10.3168/jds.2014-9281.

Marcillac-Embertson, N.M., Robinson, P.H., Fadel, J.G., and Mitloehner, F.M. 2009. Effects of shade and sprinklers on performance, behavior, physiology, and the environment of heifers. J. Dairy Sci. 92(2): 506-517. https://doi.org/10.3168/jds.2008-1012.

Meglia, G.E. 2004. Nutrition and immune response in periparturient dairy cows with emphasis on micronutrients. Ph.D. Dissertation. Swedish University of Agricultural Sciences. Uppsala, Sweden.

Miller, N., Delbecchi, L., Peticlerc, D., Wagner, G.F., Talbot, B.G., and Lacasse, P. 2006. Effect of stage of lactation and parity on mammary gland cell renewal. J. Dairy Sci. 89: 4669-4677. https://doi.org/10.3168/jds.S0022-0302(06)72517-6.

Nardone A., Lacetera, N., Bernabucci, A., and Ronchi, B. 1997. Composition of colostrum from dairy heifers exposed to high air temperatures during late pregnancy and the early postpartum period. J. Dairy Sci. 80: 838-844. https://doi.org/10.3168/jds.S0022-0302(97)76005-3.

Neave, H.W., Lomb, J., von Keirselingk, M.A.G., Behnam-Shabahang, A., and Weary, D.M. 2017. Parity differences in the behavior of transition dairy cows. J. Dairy Sci. 100:548–561. https://doi.org/10.3168/jds.2016-1.

Nienaber J., Hahn, L.G., and Eigenberg, R. 1999. Quantifying livestock responses for stress management: A review. Int. J. Biometeorol. 42: 183-188. https://doi.org/10.1007/

s004840050103.

Pollott, G.E. 2011. Do Holstein lactations of varied lengths have different characteristics? J. Dairy Sci. 94:6173–6180. https://doi.org/10.3168/jds.2011-4467.

Ramírez-Iglesia, L.N., Soto-Bellos, E., Morillo, L., Díaz de Ramírez, A. 2001. Hematology and metabolite profile of peripartum Carora breed cows. Revista Unellez de Ciencia y Tecnología. 19: 73-78.

Saeed, O.A., Jaber, B.T., Mohammed, M.T.A., Sani, U.M., Ziara, K.S., and Saad, H.M. 2021. Impacts of heat stress on blood metabolic in different periods of lactation and pregnancy in Holstein cows. Earth and Environmental Sci. 779: 012013. https://doi.org/10.1088/1755-1315/779/1/012013.

Sánchez-Castro, M., Correa-Calderón, A., Álvarez-Valenzuela F.D., Macías-Cruz, U., Anzures-Olvera, F., Zamorano-Algándar, R., Vicente-Pérez, R., Mejía-Vázquez, A., Avendaño-Reyes, L. 2014. Efectos de número de partos y época del año (verano vs. invierno) en la calidad del calostro de vacas Holstein en una zona árida. In: Memoria XXIV Reunión Internacional sobre Producción de Carne y Leche en Climas Cálidos. Mazatlán, Sinaloa, México. p. 621-628.

SAS. 2004. SAS/STAT ® 9.1 User’s Guide. Cary, N.C., USA.

Sejian, V., Bhatta, R., Gaughan, J.B., Dunshea, F.R., and Lacetera, N. 2018. Review: Adaptation of animals to heat stress. Animal. 12(S2): s431-s444. https://doi.org/10.1017/

S1751731118001945.

Skibiel, A.L., Peñagaricano, F., Amorín, R., Ahmed, B.M., Dahl, G.E., and Laporta, J. 2018. In utero heat stress alter the offspring epigenome. Scientific Reports. 8: 14609. https://doi.org/10.1038/s41598-018-32975-1.

Skrzypczak, W., Kurpińska, A., Stański, L., and Jarosz, A. 2014. Sodium, potassium and chloride homeostasis in cows during pregnancy and first months of lactation. Acta Biol. Cracov., s. Zoologia. 55/56: 58–64.

Soufleri, A., Banos, G., Panousis, N., Fletouris, D., Arsenos, G., Kougioumtzis, A., andValergakis, G.E. 2021. Evaluation of factors affecting colostrum quality and quantity in Holstein dairy cattle. Animals. 11: 2005. https://doi.org/10.3390/ ani11072005.

Stott, G. H. 1980. Immunoglobulin absorption in calf neonates with special considerations of stress. J. Dairy Sci. 63:681–688. https://doi.org/10.3168/jds.S0022-0302(80)82990-0.

St-Pierre N.R., Cobanov B., and Schnitkey G. 2003. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 86(E-Suppl.): E52-E77. https://doi.org/10.3168/

jds.S0022-0302(03)74040-5.

Tao, S., J. W. Bubolz, B. C. do Amaral, I. M. Thompson, M. J. Hayen, S. E. Johnson, and Dahl, G.E. 2011. Effect of heat stress during the dry period on mammary gland development. J. Dairy Sci. 94:5976–5986. https://doi.org/10.3168/jds.2011-4329.

Tao S., Monteiro A.P., Thompson I.M., Hayen M.J., and Dahl, G.E. 2012. Effect of late-gestation maternal heat stress on growth and immune function of dairy calves. J. Dairy Sci. 95: 7128-7136. https://doi.org/10.3168/jds.2012-5697d.

Tao S., and Dahl, G.E. 2013. Heat stress effects during late gestation on dry cows and their calves. J. Dairy Sci. 96: 4079-4093. https://doi.org/10.3168/jds.2012-6278.

Wood, D., and Quiroz-Rocha, G. F. 2010. Normal Hematology of Cattle. In: Schalm’s Veterinary Hematology, ed. Weiss, D. J., Wardrop, K. J. 6th ed. Wiley, Ames, IA, USA. p. 829–835.