Effect of Lactiplantibacillus plantarum and prebiotics on physicochemical, microbiological, and sensory quality of pasteurized raw mango juice
Main Article Content
Abstract
This study aimed to develop a functional beverage from a local mango variety, “Kaew,” and the potential probiotic Lactiplantibacillus plantarum PW1 (Lp) enriched with prebiotics, including fructooligosaccharides, inulin, and polydextrose. The effects of Lp and these functional ingredients on the beverage's physicochemical, microbiological, and sensory qualities after fermentation and during refrigeration were investigated. The addition of the potential probiotic Lp, along with prebiotics, was effectively applied in ready-to-drink raw mango juice. The viability of the Lp strain remained above 7 Log CFU/mL throughout the study periods. The findings highlighted the potential to enhance the value of mango juice through fermentation with the beneficial bacteria Lp, combined with exogenous prebiotics.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Afinjuomo, F., Abdella, S., Youssef, S.H., Song, Y., and Garg, S. 2021. Inulin and its application in drug delivery. Pharmaceuticals 14: 855. https://doi.org/10.3390/ph14090855.
Arruda, H.S., Silva, E.K., Pereira, G.A., Meireles. M.A.A., and Pastore, G.M. 2020. Inulin thermal stability in prebiotic carbohydrate-enriched araticum whey beverage. LWT - Food Sci. Technol. 128: 109418. https://doi.org/ 10.1016/j.lwt.2020.109418.
Bangar, S. P., Suri, S., Trif, M., and Ozogul, F. 2022. Organic acids production from lactic acid bacteria: A preservation approach. Food Biosci. 46: 101615. https://doi.org/ 10.1016/j.fbio.2022.101615.
Carmo, M.M.R., Walker, J.C.L., Novello, D., Caselato, V.M., Sgarbieri, V.S., Ouwehand, A.C., Andreollo, N.A., Hiane, P.A., and Santos, E.F. 2016. Polydextrose: physiological function, and effects on health. Nutrients 8: 553. http://doi.org/10.3390/nu8090553.
Cele, N.P., Akinola, S.A., Shoko, T., Manhevi, V.E., Remize, F., and Sivakumar, D. 2022. The bioaccessibility and antioxidant activities of fermented mango cultivar juices after simulated In vitro digestion. Foods 11: 2702. http://doi.org/ 10.3390/foods11172702.
Chen, L., Wang, C., and Su. J. 2023. Understanding the effect of different glucose concentrations in the oligotrophic bacterium bacillus subtilis bs-g1 through transcriptomics analysis. Microorganisms 11: 2401. https://doi.org/ 10.3390/microorganisms11102401.
Chin, S., Boughton, B.A., Gay, M.C.L., Russell, A.C., Wang, Y., Nambiar, V., McHenry, M.P., Holmes, E., Nicholson, J.K., and Loo, R.L. 2024. Unravelling inulin molecules in food sources using a matrix-assisted laser desorption/ionization magnetic resonance mass spectrometry (MALDI-MRMS) pipeline. Food Res. Int. 184: 114276. https://doi.org/ 10.1016/j.foodres.2024.114276.
Duar, R.M., Ang, P.T., Hoffman, M., Wehling, R., Hutkins, R., and Schlegel, V. 2015. Processing effects on four prebiotic carbohydrates supplemented in an extruded cereal and a low pH drink. Cogent food agric. 1: 1013782. http://doi.org/10.1080/23311932.2015.1013782.
Geng, S., Zhang, T., Gao, J., Li, X., Chitrakar, B., Mao, K., and Sang, Y. 2023. In vitro screening of synbiotics composed of Lactobacillus paracasei VL8 and various prebiotics and mechanism to inhibits the growth of Salmonella Typhimurium. LWT - Food Sci. Technol. 180: 114666. https://doi.org/10.1016/j.lwt.2023.114666.
Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swansonm K.S., Cani, P.D., Verbeke, K., and Reid, G. 2017. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14: 491–502. http://doi.org/10.1038/nrgastro.2017.75.
Glibowski, P., and Bukowska, A. 2011. The effect of pH, temperature and heating time on inulin chemical stability. Acta Sci. Pol. Technol. Aliment. 10(2): 189-196
Fakhri, L.A., Ghanbarzadeh, B., and Falcone, P.M. 2023. Development of a novel low-calorie lime juice-based prebiotic beverage using a combined design optimization methodology. Foods 12: 680. http://doi.org/10.3390/foods12030680.
FAO. 2024. Major tropical fruits market review: Preliminary results 2023. Food and Agriculture Organization of the United Nations, Rome.
Fonteles, T.V., and Rodrigues, S. 2018. Prebiotic in fruit juice: processing challenges, advances, and perspectives. Food Science 22: 55-61. http://doi.org/10.1016/j.cofs.2018.02.001.
Fratianni, F., Giulio, B.D., Acierno, A., Amato, G., Feo, V.D., Coppola, R., and Nazzaro, F. 2023. In vitro prebiotic effects and antibacterial activity of five leguminous honeys. Foods 12: 3338. https://doi.org/10.3390/foods12183338.
Horticultural Research Institute. 2024. Mango. Available source: https://www.doa.go.th/hort/?page_id=52837.
Hughes, R.L., Alvarado, D.A., Swanson, K.S., and Holscher, H.D. 2021. The prebiotic potential of inulin-type fructans: a systematic review. Adv Nutr. 13: 492-529. https://doi.org/ 10.1093/advances/nmab119.
Iland, P.A. Ewart., A. Markides., J. Sitters., and N. Bruer 2000. Techniques for chemical analysis and quality monitoring during winemaking. Patrick Iland Wine Promotions, Adelaide.
Jeong, C., H., Ko, H.I., Lee, M.E., Min, S., Lee, M. and Kim, T. 2024. Combination approach of paired starter culture and lactic acid on inhibiting autochthonous lactic acid bacteria for extending kimchi shelf life. Food Control 157:110167. http://doi.org/10.1016/j.foodcont.2023.110167.
Jitpakdee, J., Kantachote, D., Kanzaki, H., and Nitoda, T. 2022. Potential of lactic acid bacteria to produce functional fermented whey beverage with putative health promoting attributes. LWT - Food Sci. Technol. 160: 113269. https://doi.org/10.1016/j.lwt.2022.113269.
Ju, J., Heo, S., Kim, H., Jo, M., Jeon, S., Park, D., Kim, C., and Oh, B. 2024. Selective production of two prebiotic extracellular polysaccharides from an oral probiotic lactic acid bacterium, Streptococcus salivarius SY511. LWT - Food Sci. Technol. 198: 116051. https://doi.org/10.1016/ j.lwt.2024.116051.
Kayitesi, E., Onojakpor, O., and Moyo, S.M. 2023. Highlighting the impact of lactic-acid-bacteria-derived flavours or aromas on sensory perception of african fermented cereals. Fermentation 9: 111. https://doi.org/10.3390/fermentation 9020111.
Kumar, N., Pratibha., Upadhyay, A., Petkoska, A.T., Gniewosz, M., and Kieliszek, M. 2023. Extending the shelf life of mango (Mangifera indica L.) fruits by using edible coating based on xanthan gum and pomegranate peel extract. J. Food Meas. Charact. 17: 1300-1308. https://doi.org/ 10.1007/s11694-022-01706-6.
Laophongphit, A., Siripornadulsil, S., and Siripornadulsil, W. 2024. Improvements in the functions of probiotic-based mango pulp rich in phenolic and proline antioxidants by treatment with pectinase and fermentation with lactic acid bacteria. LWT - Food Sci. Technol. 181: 114756. https://doi.org/10.1016/j.lwt.2023.114756.
Lebaka, V.R., Wee, Y., Ye, W., and Korivi, M., 2021. Nutritional composition and bioactive compounds in three different parts of mango fruit. Int. J. Environ. Res. Public Health 18: 741. https://doi.org/10.3390/ijerph18020741.
Lee, Y.R., Lee, H., Kim, Y., Shin, K., and Park, H. 2023. Prebiotic and anti-adipogenic effects of radish green polysaccharide. Microorganisms 11: 1862. https://doi.org/10.3390/ microorganisms11071862.
Maldonado-Celis, M.E., Yahia, E.M., Bedoya, R., Landázuri, P., Loango, N., Aguillón, J., Restrepo, B., and Ospina, J.C.G. 2019. Chemical composition of mango (Mangifera indica L.) fruit: nutritional and phytochemical compounds. Front. Plant Sci. 10:1073. http://doi.org/10.3389/fpls.2019.01073.
Mantzourani, I., Nikolaou, A., Kourkoutas, Y., Alexopoulos, A., Dasenaki, M., Mastrotheodoraki, A., Proestos, C., Thomaidis, N., and Plessas, S. 2024. Chemical profile characterization of fruit and vegetable juices after fermentation with probiotic strains. Foods13: 1136. http://doi.org/10.1016/j.carbpol.2015.05.02610.3390/foods13071136.
McLoughlin, R.F., Berthon, B.S., Jensen, M.E., Baines, K.J., and Wood, L.G. 2017. Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: a systematic review and meta-analysis. Am J Clin Nutr. 106: 930-945. https://doi.org/10.3945/ajcn.117.156265.
Meilgaard, H., Civille, G.V., and Carr, B.T. 2006. Sensory evaluation techniques. CRC Press. Boca Raton.
Mensink, M.A., Frijlink, H.W., Maarschalk, K.V., and Hinrichs, W.L.J. 2015. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydr. Polym. 130: 405–419. https://doi.org/10.1016/j.carbpol.2015.05. 026.
Moon, H., Kang, K., and Kim, M. 2024. Potential prebiotic effects of artemisia capillaris-derived transglycosylated product. Foods 13: 3267. https://doi.org/10.3390/foods13203267.
Munoz, R., Rivas, B., Rodríguez, H., Esteban-Torres, M., Reveron, I., Santamaría, L., Landete, J.M., Plaza-Vinuesa, L., Sanchez-Arroyo, A., Jimenez, N., and Curiel, J.A. 2024. Food phenolics and Lactiplantibacillus plantarum. Int. J. Food Microbiol. 412: 110555. https://doi.org/10.1016/ j.ijfoodmicro.2023.110555.
Park, S., Seo, S., Kim, E., Byun, S., Na, C., and Son, H. 2019. Changes of microbial community and metabolite in kimchi inoculated with different microbial community starters. Food Chem. 274: 558565. https://doi.org/10.1016/ j.foodchem.2018.09.032.
Papun, B., Wongputtisin, P., Kanpiengjai, A., Pisithkul, T., Manochai, P., Manowan, K., Atsaneechantra, A., and Chomsri, N. 2024. Fermentative characteristics and metabolic profiles of Japanese apricot juice fermented with Lactobacillus acidophilus and Torulaspora delbrueckii. Foods 13(21): 3455. https://doi.org/10.3390/foods 13213455.
Peng, K., Koubaa, M., Bals, O., and Vorobiev, E. 2020. Recent insights in the impact of emerging technologies on lactic acid bacteria: a review. Food Res. Int. 137: 109544. https://doi.org/10.1016/j.foodres.2020.109544.
Pinto, T., Vilela, A., and Cosme, F. 2022. Chemical and sensory characteristics of fruit juice and fruit fermented beverages and their consumer acceptance. Beverages 8: 33. https://doi.org/10.3390/beverages8020033.
Pott, I., Konrad, S., Scherer, R., Wiriyacharee, P., and Mühlbauer, W. 2004. Quality of five Thai mango cultivars (Mangifera indica L.) using a solar drying system. Chiang Mai J. Sci. 3(3): 189-198.
Paunrat, N., Meethaworn, K., Wongsakulsukkool, K., Pathaveerat, S., and Noypitak, S. 2024. Study on physical properties of mango for design and fabrication picked mango cutting and peeling machine. TSAE. 30(1): 1-9.
Spínola, V., Pinto, J., and Castilho, P.C. 2015. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD–ESI-MSn and screening for their antioxidant activity. Food Chem. 173: 14-30. https://doi.org/10.1016/j.foodchem.2014.09.163.
Renuka, B., Kulkarni, S.G., Vijayanand, P., and Prapulla, S.G. 2009. Fructooligosaccharide fortification of selected fruit juice beverages: Effect on the quality characteristics. LWT - Food Sci. Technol. 42: 10311033. https://doi. org/10.1016/j.lwt.2008.11.004.
Ribera, C., S´anchez-Ortí, J.V., Clarke, G.C., Marx, W., M¨orkl, S., and Balanz´a-Martínez, V. 2024. Probiotic, prebiotic, synbiotic and fermented food supplementation in psychiatric disorders: A systematic review of clinical trials. Neurosci. Biobehav. Rev. 158: 105561. https://doi.org/10.1016/j.neubiorev.2024.105561.
Richardson, M., Tyuftin, A.A., Kilcawley, K.N., Gallagher, E., O’Sullivan, M.G., and Kerry, J.P. 2021. The application of pureed butter beans and a combination of inulin and rebaudioside a for the replacement of fat and sucrose in sponge cake: sensory and physicochemical analysis. Foods 10(2): 254. https://doi.org/10.3390/foods10020254.
Rodríguez-Melcón, C., Alonso-Calleja, C., García-Fernández, C., Carballo, J., and Capita, R. 2022. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for twelve antimicrobials (biocides and antibiotics) in eight strains of Listeria monocytogenes. Biology 11: 46. https://doi.org/10.3390/biology11010046.
Rumainum, I.M., Worarad, K., Srilaong, V., and Yamane, K. 2018. Fruit quality and antioxidant capacity of six Thai mango cultivars. Int. J. Agric. Nat. Resour. 52: 208214. https://doi.org/10.1016/j.anres.2018.06.007.
Siciliano, R.S., Reale, A., Mazzeo, M.F., Morandi, S., Silvetti, T., and Brasca, M. 2021. Paraprobiotics: A new perspective for functional foods and nutraceuticals. Nutrients 13: 1225. https://doi.org/10.3390/nu13041225.
USDA. 2015. Fructooligosaccharides. Technical evaluation report - limited scope compiled by ICF International for the USDA National Organic Program. United States Department of Agriculture. 9 p.
White, J., and Hekmat, S. 2018. Development of probiotic fruit juices using Lactobacillus rhamnosus GR-1 fortified with short chain and long chain inulin fiber. Fermentation 4: 27. https://doi.org/10.3390/fermentation4020027.
Wongputtisin, P., and Khanongnuch, C. 2015. Prebiotic properties of crude oligosaccharide prepared from enzymatic hydrolysis of basil seed gum. Food Sci. Biotechnol. 24(5): 1767-1773. https://doi.org/10.1007/s10068-015-0230-9.
Wongputtisin, P., Khanongnuch, C., Pongpiachan, P., and Lumyoung, S. 2007. Antioxidant activity improvement of soybean meal by microbial fermentation. Res. J. Microbiol. 2(7): 577-583.
Worldpopulationreview. 2024. Mango Production by Country 2024. Available source: worldpopulationreview.com/
country-rankings/mango-production-by-country, 01 October 2024.
You, S., Ma, Y., Yan, B., Pei, W., Wu, Q., Ding, C., and Huang, C. 2022. The promotion mechanism of prebiotics for probiotics: A review. Front. Nutr. 9: 1000517. https://doi.org/ 10.3389/fnut.2022.1000517.
Zhang, Y., Xiao, F., Zhang, L., Ding, Z., Shi, G., and Li, Y. 2023. A new mechanism of carbon metabolism and acetic acid balance regulated by CcpA. Microorganisms 11: 2303. https://doi.org/10.3390/microorganisms11092303.
Zhao, M., Cao, X., Wu, Y., Zou, S., Li, Z., Lin, X., Ji, C., Dong, L., Zhang, S., Yu, C., and Liang, H. 2024. Effects of prebiotics on the fermentation of traditional suancai of Northeast China. Food Sci. Hum. Wellness 13: 1358-1367. https://doi.org/10.26599/FSHW.2022.9250114.